首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Scanning Microphotolysis: Three-Dimensional Diffusion Measurement and Optical Single-Transporter Recording
Authors:Reiner Peters  Ulrich Kubitscheck
Institution:Institut für Medizinische Physik und Biophysik, Westf?lische Wilhelms-Universit?t, Robert-Koch-Strasse 31, Münster, D-48149.
Abstract:Scanning microphotolysis (SCAMP) is a combination of fluorescence microphotolysis and confocal laser scanning microscopy. A laser scanning microscope is equipped with an optical switch able to modulate the power or/and wavelength of the laser beam in less than a microsecond while a dedicated computer program is employed to precisely coordinate scanning process and laser beam modulation. By these means it becomes possible to vary the power or/and wavelength of the laser beam during scanning at a precision of one resolution element. Patterns of almost arbitrary design can be written into the object by photolysis, e.g., photobleaching or photoactivation. The dissipation of the photolysis pattern by diffusion or other types of molecular transport can be followed at confocal resolution and used to characterize the transport process. SCAMP can be employed in conjunction with single-photon or multiphoton excitation. Furthermore, it can be easily installed on virtually any confocal laser scanning microscope. We summarize at first the conceptual and practical basis of SCAMP. Then, two novel applications are discussed: (i) measurements of translational diffusion coefficients in truly three-dimensional systems at diffraction-limited resolution, and (ii) optical recording of single transporters in membrane patches.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号