首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A new class of mutants in DNA polymerase I that affects gene transposition
Authors:M Syvanen  J D Hopkins  M Clements
Institution:Department of Microbiology and Molecular Genetics Harvard Medical School, Boston, MA 02115, U.S.A.
Abstract:A mutant of Escherichia coli strain K12 is defective in transposition of both the transposons Tn5 and Tn10 and the insertion sequences IS1 and IS5. In addition to the defect in transposition, the mutant is also sensitive to methylmethane sulfonate and ultraviolet light, does not grow phage lambda red and is missing the polymerizing activity and the 5′?3′ exonuclease activity of DNA polymerase I, indicating that the mutation is in the structural gene for this enzyme. We have designated the mutant allele as polA34. All of the properties associated with this mutant cotransduce with a marker known to be linked to polA. Furthermore, revertants of the mutant to methylmethane sulfonate resistance also regain the normal transposition frequencies of Tn5, IS1 and IS5. Complementation tests using the diploid polA34/polA show that the sensitivity to methylmethane sulfonate, and the defect in transposition is recessive to the wild-type. Some revertants of polA34 (called polA34 spa) restore resistance to methylmethane sulfonate and u.v. and partially restore the polymerase and 5′?3′ exonuclease activity but do not restore transposition. Thus we conclude that neither the polymerase activity nor the 5′?3′ exonuclease activity are required in transposition, but rather some other property of DNA polymerase I is needed.
Keywords:poll  DNA polymerase I  MMS  methylmethane sulfonate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号