首页 | 本学科首页   官方微博 | 高级检索  
     


Two components of voltage-dependent inactivation in Ca(v)1.2 channels revealed by its gating currents
Authors:Ferreira Gonzalo  Ríos Eduardo  Reyes Nicolás
Affiliation:Departmento Biofísica, Facultad de Medicina, Montevideo, Uruguay. ferreira@fmed.edu.uy
Abstract:Voltage-dependent inactivation (VDI) was studied through its effects on the voltage sensor in Ca(v)1.2 channels expressed in tsA 201 cells. Two kinetically distinct phases of VDI in onset and recovery suggest the presence of dual VDI processes. Upon increasing duration of conditioning depolarizations, the half-distribution potential (V(1/2)) of intramembranous mobile charge was negatively shifted as a sum of two exponential terms, with time constants 0.5 s and 4 s, and relative amplitudes near 50% each. This kinetics behavior was consistent with that of increment of maximal charge related to inactivation (Qn). Recovery from inactivation was also accompanied by a reduction of Qn that varied with recovery time as a sum of two exponentials. The amplitudes of corresponding exponential terms were strongly correlated in onset and recovery, indicating that channels recover rapidly from fast VDI and slowly from slow VDI. Similar to charge "immobilization," the charge moved in the repolarization (OFF) transient became slower during onset of fast VDI. Slow VDI had, instead, hallmarks of interconversion of charge. Confirming the mechanistic duality, fast VDI virtually disappeared when Li(+) carried the current. A nine-state model with parallel fast and slow inactivation pathways from the open state reproduces most of the observations.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号