首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human nucleotide excision repair protein XPA: extended X-ray absorption fine-structure evidence for a metal-binding domain.
Authors:N J Hess  G W Buchko  S D Conradson  F J Espinosa  S Ni  B D Thrall  and M A Kennedy
Institution:Pacific Northwest National Laboratories, Biogeochemistry Resources, Molecular Biosciences Department, Richland, Washington 99352, USA.
Abstract:The ubiquitous, multi-enzyme, nucleotide excision repair (NER) pathway is responsible for correcting a wide range of chemically and structurally distinct DNA lesions in the eukaryotic genome. Human XPA, a 31 kDa, zinc-associated protein, is thought to play a major NER role in the recognition of damaged DNA and the recruitment of other proteins, including RPA, ERCC1, and TFIIH, to repair the damage. Sequence analyses and genetic evidence suggest that zinc is associated with a C4-type motif, C105-X2-C108-X17-C126-X2-C129, located in the minimal DNA binding region of XPA (M98-F219). The zinc-associated motif is essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc associated minimal DNA-binding domain of XPA (ZnXPA-MBD) show directly, for the first time, that the zinc is coordinated to the sulfur atoms of four cysteine residues with an average Zn-S bond length of 2.34+/-0.01 A. XPA-MBD was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily (>95%) cobalt associated (CoXPA-MBD). EXAFS spectra collected on CoXPA-MBD show that the cobalt is also coordinated to the sulfur atoms of four cysteine residues with an average Co-S bond length of 2.33+/-0.02 A.
Keywords:DNA repair protein  EXAFS  metalloproteins  nucleotide excision repair  XPA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号