首页 | 本学科首页   官方微博 | 高级检索  
     


PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-dependent pool in human fetal adrenal gland chromaffin cells
Authors:Payet Marcel D  Bilodeau Lyne  Breault Lyne  Fournier Alain  Yon Laurent  Vaudry Hubert  Gallo-Payet Nicole
Affiliation:Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada. Marcel.Payet@USherbrooke.ca
Abstract:Previous studies have shown that human fetal adrenal gland from 17- to 20-week-old fetuses expressed pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, which were localized on chromaffin cells. The aim of the present study was to identify PACAP receptor isoforms and to determine whether PACAP can affect intracellular calcium concentration ([Ca(2+)](i)) and catecholamine secretion. Using primary cultures and specific stimulation of chromaffin cells, we demonstrate that PACAP-38 induced an increase in [Ca(2+)](i) that was blocked by PACAP (6-38), was independent of external Ca(2+), and originated from thapsigargin-insensitive internal stores. The PACAP-triggered Ca(2+) increase was not affected by inhibition of PLC beta (preincubation with U-73122) or by pretreatment of cells with Xestospongin C, indicating that the inositol 1,4,5-triphosphate-sensitive stores were not mobilized. However, forskolin (FSK), which raises cytosolic cAMP, induced an increase in Ca(2+) similar to that recorded with PACAP-38. Blockage of PKA by H-89 or (R(p))-cAMPS suppressed both PACAP-38 and FSK calcium responses. The effect of PACAP-38 was also abolished by emptying the caffeine/ryanodine-sensitive Ca(2+) stores. Furthermore, treatment of cells with orthovanadate (100 microm) impaired Ca(2+) reloading of PACAP-sensitive stores indicating that PACAP-38 can mobilize Ca(2+) from secretory vesicles. Moreover, PACAP induced catecholamine secretion by chromaffin cells. It is concluded that PACAP-38, through the PAC(1) receptor, acts as a neurotransmitter in human fetal chromaffin cells inducing catecholamine secretion, through nonclassical, recently described, ryanodine/caffeine-sensitive pools, involving a cAMP- and PKA-dependent phosphorylation mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号