首页 | 本学科首页   官方微博 | 高级检索  
     


Establishing synthesis pathway-host compatibility via enzyme solubility
Authors:Sara A. Amin  Venkatesh Endalur Gopinarayanan  Nikhil U. Nair  Soha Hassoun
Affiliation:1. Department of Computer Science, Tufts University, Medford, Massachusetts;2. Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
Abstract:Current pathway synthesis tools identify possible pathways that can be added to a host to produce the desired target molecule through the exploration of abstract metabolic and reaction network space. However, not many of these tools explore gene-level information required to physically realize the identified synthesis pathways, and none explore enzyme-host compatibility. Developing tools that address this disconnect between abstract reactions/metabolic design space and physical genetic sequence design space will enable expedited experimental efforts that avoid exploring unprofitable synthesis pathways. This work describes a workflow, termed Probabilistic Pathway Assembly with Solubility Confidence Scores (ProPASS), which links synthesis pathway construction with the exploration of the physical design space as imposed by the availability of enzymes with predicted characterized activities within the host. Predicted protein solubility propensity scores are used as a confidence level to quantify the compatibility of each pathway enzyme with the host Escherichia coli (E. coli). This study also presents a database, termed Protein Solubility Database (ProSol DB), which provides solubility confidence scores in E. coli for 240,016 characterized enzymes obtained from UniProtKB/Swiss-Prot. The utility of ProPASS is demonstrated by generating genetic implementations of heterologous synthesis pathways in E. coli that target several commercially useful biomolecules.
Keywords:metabolic engineering  pathway design  pathway implementation  solubility  synthesis pathway  synthetic biology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号