首页 | 本学科首页   官方微博 | 高级检索  
     


Alterations in the Immunogenic Properties of Soluble Trimeric Human Immunodeficiency Virus Type 1 Envelope Proteins Induced by Deletion or Heterologous Substitutions of the V1 Loop
Authors:Lance Ching  Leonidas Stamatatos
Affiliation:Seattle BioMed, Seattle, Washington 98109,1. Department of Global Health, University of Washington, Seattle, Washington 981952.
Abstract:HIV-1 gp140 envelope immunogens express conserved epitopes that are targeted by broadly cross-reactive neutralizing antibodies, but they fail to elicit similar antibodies upon immunization. The poor immunogenicity of conserved epitopes on gp140 could be linked to the high immunogenicity of variable Env regions on such constructs. Previous studies have shown that the first hypervariable region (V1 loop) is immunogenic on soluble gp140s but elicits type-specific antibodies. To address issues related to the high immunogenicity of the V1 loop, two conceptually opposite approaches were tested. In the first approach, we eliminated the V1 loop from our gp140 construct and examined how V1 deletion altered the immunogenic properties of other Env regions. In the second approach, we took advantage of the high immunogenicity of the V1 loop and engrafted four diverse V1 loops onto a common gp140 Env “scaffold.” These four scaffolds were used as a cocktail of immunogens to elicit diverse anti-V1 antibodies, under the hypothesis that eliciting diverse anti-V1 antibodies would expand the neutralizing breadth of immune sera. Our study indicates that three of four heterologous V1 loops were immunogenic on the common Env backbone “scaffold,” but heterologous anti-V1 neutralizing responses were observed in only one case. Both types of V1 modification dampened the immunogenicity of the V3 loop, differentially altered the immunogenicity of the transmembrane gp41 subunit, and altered the relative immunogenicities of unknown Env regions, including potentially the CD4-binding site (CD4-bs) and trimer-specific targets, which elicited cross-reactive neutralizing antibodies but of limited breadth.An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will need to incorporate an envelope-derived immunogen capable of eliciting potent and broadly cross-reactive neutralizing antibody responses against diverse primary HIV-1 isolates. The target of anti-HIV neutralizing antibodies (NAbs), the viral envelope (Env) glycoprotein, is expressed as a single transmembrane polypeptide precursor (gp160) that is glycosylated and cleaved into an extracellular subunit (gp120) and a transmembrane subunit (gp41) during intracellular processing (10, 20, 21, 54). The functional Env form on virion surfaces is a trimer composed of three noncovalently associated gp120-gp41 heterodimers. Soluble forms of the trimeric Env have been generated by introducing stop codons immediately upstream of the transmembrane domain of gp41. These constructs are commonly referred to as gp140 proteins and have been tested extensively as immunogens to elicit anti-HIV-1 NAbs. Soluble gp140s express epitopes that are targets of NAbs, including cross-reactive NAbs such as b12, 4E10, and 2G12 (5, 17, 34, 45, 47, 49, 50, 52, 57). Immunization with gp140 immunogens nonetheless does not result in a broadly cross-reactive neutralizing antibody response (2, 3, 17, 18, 26, 56, 58).Epitope mapping analyses of the Abs elicited by soluble trimeric gp140 immunogens revealed that a large fraction of the gp140-induced neutralization response targets the first hypervariable region of gp120 (the V1 loop). In our hands, ∼40 to 70% of the neutralizing activity of sera from animals immunized with SF162 gp140 constructs is due to anti-V1 antibodies (17). In a study by Li et al. with YU2 gp140 (30) and a study by Wu et al. with HxB2/BaL gp145 (56), ∼10 to 80% of anti-YU2 neutralizing activity and 100% of anti-HxB2 neutralizing activity, respectively, were due to anti-V1 Abs. These anti-V1 Abs, however, are not cross-reactive. Previously, we also demonstrated that the diverse positionings of the V1 across heterologous strains limit access of broadly cross-reactive monoclonal antibodies (MAbs) to their targets (12).Here, taking into consideration the V1 loop''s high immunogenicity, we employed two opposing approaches aimed at the elicitation of cross-reactive neutralizing antibody responses to HIV-1. In the first approach, we deleted the V1 loop on our soluble trimeric gp140 construct (ΔV1SF162 gp140) and examined whether and how this modification altered the immunogenic properties of other Env regions. In the second approach, we substituted the V1 loop on our SF162 gp140 construct with the V1 loops from four heterologous HIV-1 viruses (89.6, YU2, JRFL, and HxB2) that differ in their amino acid compositions and in the number of potential N-linked glycosylation sites (PNGs). These four heterologous viruses display various neutralization phenotypes (7) and coreceptor utilization profiles (15, 35, 36, 48, 51). A total of four SF162 Env-based gp140 “scaffolds” expressing four different V1 loops were created and used as immunogens in a cocktail to test as a “proof of principle” the hypothesis that if diverse V1 loops are presented to the immune system simultaneously, the elicitation of anti-V1 NAbs with diverse specificities would broaden the overall neutralizing activity of immune sera. We also immunized animals with each of the four V1 chimeric scaffolds individually to ensure that all V1 loops were immunogenic when presented on the heterologous SF162 Env background.All immunogens (including wild-type [WT] SF162 gp140 and ΔV1SF162 gp140) elicited homologous anti-SF162 NAbs. All immunogens except the scaffold construct expressing the YU2 V1 also elicited heterologous NAbs against the sensitive lab-adapted strain HxB2. The heterologous YU2, 89.6, and HxB2 V1 loops, but not the JRFL V1 loop, were immunogenic on the background of the SF162 Env scaffold. However, only anti-V1 neutralizing activity against the HxB2 virus was observed. Although neither approach resulted in the development of broad anti-HIV-1 cross-neutralizing antibody responses, cross-neutralizing antibody responses of narrow breadth were elicited. These responses were not due to antibodies that target to variable regions of gp120 but were due to antibodies that target either epitopes of the CD4-binding site (CD4-bs) or epitopes that are not present on monomeric gp120. These observations have implications for guiding rational Env-based immunogen design and for potentially eliciting broadly cross-reactive NAb responses.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号