首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plant Immunity Directly or Indirectly Restricts the Injection of Type III Effectors by the Pseudomonas syringae Type III Secretion System
Authors:Emerson Crabill  Anna Joe  Anna Block  Jennifer M van Rooyen  James R Alfano
Institution:Center for Plant Science Innovation (E.C., A.J., A.B., J.M.v.R., J.R.A.), School of Biological Sciences (E.C., A.J., J.M.v.R.), and Department of Plant Pathology (A.B., J.R.A.), University of Nebraska, Lincoln, Nebraska 68588–0660
Abstract:Plants perceive microorganisms by recognizing microbial molecules known as pathogen-associated molecular patterns (PAMPs) inducing PAMP-triggered immunity (PTI) or by recognizing pathogen effectors inducing effector-triggered immunity (ETI). The hypersensitive response (HR), a programmed cell death response associated with ETI, is known to be inhibited by PTI. Here, we show that PTI-induced HR inhibition is due to direct or indirect restriction of the type III protein secretion system''s (T3SS) ability to inject type III effectors (T3Es). We found that the Pseudomonas syringae T3SS was restricted in its ability to inject a T3E-adenylate cyclase (CyaA) injection reporter into PTI-induced tobacco (Nicotiana tabacum) cells. We confirmed this restriction with a direct injection assay that monitored the in planta processing of the AvrRpt2 T3E. Virulent P. syringae strains were able to overcome a PAMP pretreatment in tobacco or Arabidopsis (Arabidopsis thaliana) and continue to inject a T3E-CyaA reporter into host cells. In contrast, ETI-inducing P. syringae strains were unable to overcome PTI-induced injection restriction. A P. syringae pv tomato DC3000 mutant lacking about one-third of its T3E inventory was less capable of injecting into PTI-induced Arabidopsis plant cells, grew poorly in planta, and did not cause disease symptoms. PTI-induced transgenic Arabidopsis expressing the T3E HopAO1 or HopF2 allowed higher amounts of the T3E-CyaA reporter to be injected into plant cells compared to wild-type plants. Our results show that PTI-induced HR inhibition is due to direct or indirect restriction of T3E injection and that T3Es can relieve this restriction by suppressing PTI.Plants come into contact with a myriad of microorganisms and rely on their innate immune systems to perceive potential microbial infections and induce immune responses. Plant innate immunity can be broadly portrayed as consisting of two major branches, distinguished primarily by their mode of microbe detection. The first branch is activated by extracellular pattern recognition receptors (Boller and Felix, 2009; Nicaise et al., 2009) that perceive broadly conserved molecules called pathogen (microbe)-associated molecular patterns (PAMPs; Medzhitov and Janeway, 1997; Ausubel, 2005). The response induced by this recognition is termed PAMP-triggered immunity (PTI; Jones and Dangl, 2006). A well-characterized example of PTI in plants is the recognition of and subsequent immune response to a small N-terminal region of bacterial flagellin by the FLS2 receptor kinase of Arabidopsis (Arabidopsis thaliana; Felix et al., 1999; Zipfel et al., 2004). Plant resistance (R) proteins activate the second branch of the plant innate immune system by recognizing specific pathogen effector proteins. The response induced by this recognition is termed effector-triggered immunity (ETI; Jones and Dangl, 2006). ETI and PTI induce similar innate immune responses, including ion fluxes, reactive oxygen species (ROS), and callose (β-1,3-glucan) deposition in the cell wall (Tsuda et al., 2008; Boller and Felix, 2009); however, ETI generally also includes the induction of a programmed cell death called the hypersensitive response (HR; Heath, 2000).The induction of ETI in response to a bacterial plant pathogen is generally due to the recognition of bacterial type III effector (T3E) proteins injected into the plant cell by the pathogen''s type III protein secretion system (T3SS; Alfano and Collmer, 1997; Buttner and He, 2009). These recognized T3Es were classically known as avirulence (Avr) proteins because they induced ETI responses sufficient to prevent a normally virulent pathogen from causing disease, thereby rendering it avirulent (Leach and White, 1996). However, it has become increasingly apparent that many T3Es benefit their bacteria by suppressing PTI and ETI (Block et al., 2008; Cui et al., 2009; Guo et al., 2009). Under the current model, plants first developed PTI to reduce microbial colonization of the apoplast. Successful bacterial pathogens countered this by acquiring a T3SS and PTI-suppressing T3Es (Espinosa and Alfano, 2004; Chisholm et al., 2006; Jones and Dangl, 2006).The bacterial pathogen Pseudomonas syringae infects the aerial parts of many plant species. It displays host specificity, and its strains have been separated into more than 50 pathovars based on the host plants that they infect. For example, P. syringae pv tabaci is virulent in tobacco (Nicotiana tabacum), but it triggers nonhost resistance in Arabidopsis, a plant-microbe interaction referred to as a nonhost interaction. Nonhost resistance describes the resistance observed when all members of a plant species are resistant to a specific pathogen (Thordal-Christensen, 2003; Mysore and Ryu, 2004). While not well understood, both PTI (Li et al., 2005) and ETI (Nissan et al., 2006; Wei et al., 2007) have been shown to play a role in nonhost resistance to bacterial pathogens. In some cases, P. syringae strains display race cultivar resistance. This is generally due to the resistant cultivar possessing an R protein that can recognize a T3E from the pathogen inducing ETI (Bent and Mackey, 2007). One well-studied P. syringae strain is P. syringae pv tomato DC3000, which causes bacterial speck disease on specific tomato (Solanum lycopersicum) cultivars and disease on all ecotypes of Arabidopsis tested. These interactions have been classically referred to as compatible interactions. However, DC3000 triggers nonhost resistance in tobacco and many other plants.DC3000 contains more than 30 T3Es (Lindeberg et al., 2006; Cui et al., 2009; Cunnac et al., 2009). These are encoded by genes contained within the Hrp pathogenicity island, which also encodes the T3SS apparatus (Alfano et al., 2000), other pathogenicity islands, or as individual genes throughout the genome of DC3000 (Buell et al., 2003; Wei et al., 2007). One molecular tool that has been useful in studying the effect individual T3Es have on plants is the cosmid pHIR11 (Huang et al., 1988). This cosmid encodes a functional T3SS from P. syringae pv syringae 61 and the T3E HopA1. It confers upon nonpathogenic bacteria, such as Pseudomonas fluorescens, the ability to inject HopA1 into plant cells. In tobacco and other plants, injected HopA1 induces ETI, including an HR (Huang et al., 1988; Alfano et al., 1997). The expression of other T3Es in P. fluorescens(pHIR11) enabled them to be screened for the ability to suppress HopA1-induced ETI (Jamir et al., 2004; Guo et al., 2009). Bacterial strains carrying the pHIR11 derivatives pLN18 or pLN1965, both of which lack hopA1 and so no longer induce ETI, were used to determine which T3Es could suppress PTI (Oh and Collmer, 2005; Guo et al., 2009). Collectively, these experiments demonstrated that many P. syringae T3Es possessed the ability to suppress both ETI and PTI.One PTI suppression assay using P. fluorescens(pLN18) employed by Oh and Collmer (2005) took advantage of earlier observations indicating that PTI could inhibit the ability of the plant to mount an HR in response to an ETI-inducing bacterial strain (Newman et al., 2000; Klement et al., 2003). In this assay, the PTI inducers P. fluorescens(pLN18) or a 22-amino-acid peptide from flagellin (flg22) are infiltrated into Nicotiana benthamiana. Six hours later, the ETI inducer DC3000 is infiltrated in a region of the leaf that overlaps with the earlier infiltration. The HR is typically inhibited in the overlapping region that was pretreated with a PTI inducer. Several T3Es suppressed this inhibition when they were separately delivered at time of pretreatment (Oh and Collmer, 2005). It has been speculated that the probable mechanisms for inhibition of the HR caused by PTI include impairment of delivery of T3Es that induce the HR, modification of the events downstream of T3E recognition, or a shutdown of programmed cell death (Newman et al., 2000).Here, we show that PTI inhibits the HR on tobacco because it directly or indirectly restricts the ability of P. fluorescens(pLN1965) or DC3000 to inject T3Es based on injection (translocation) assays using T3E-adenylate cyclase (CyaA) fusions. This was confirmed using an independent injection assay that monitored the amount of the cleaved in planta form of the T3E AvrRpt2. Interestingly, this injection restriction was greatly reduced in the compatible interactions between DC3000 and Arabidopsis or between P. syringae pv tabaci 11258 and tobacco. A DC3000 mutant lacking four clusters of T3E genes, which corresponds to 11 T3Es, was less able to inject a T3E-CyaA fusion into PTI-induced Arabidopsis, suggesting that the PTI suppressing activities of the T3E inventory of DC3000 allow it to overcome the injection restriction. Transgenic Arabidopsis plants separately expressing specific T3Es known to be capable of PTI suppression increased the ability of P. fluorescens(pLN1965) to inject a T3E-CyaA fusion into PTI-induced plant cells. Collectively, these data suggest that PTI can directly or indirectly restrict type III injection and PTI suppression by T3Es can relieve this restriction in susceptible plant cells but not plant cells undergoing ETI.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号