首页 | 本学科首页   官方微博 | 高级检索  
     


A Monoacylglycerol Lipase from Mycobacterium smegmatis Involved in Bacterial Cell Interaction
Authors:Rabeb Dhouib  Fran?oise Laval  Frédéric Carrière  Mamadou Daffé   Stéphane Canaan
Affiliation:CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UPR 9025, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France,1. CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, F-31077 Toulouse cedex 04, France,2. Université de Toulouse (Toulouse III), 118 route de Narbonne, 31062 Toulouse, France3.
Abstract:MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.Tuberculosis, which is caused by Mycobacterium tuberculosis, is a major public health issue worldwide. Because of the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and the high incidence of HIV and tuberculosis coinfection (16), it is becoming increasingly difficult to combat the spread of this disease, and the global health burden of tuberculosis is extremely heavy. The reasons for the persistence of the tubercle bacillus include not only its ability to enter into a state of dormancy in its host for decades, evading the immune system by forming structures called granulomas (17), but also its unique and complex cell wall composed of specific lipids (8). These characteristics are thought to be good focus points for drug development. In granulomas, during the nonreplicative stage, the bacteria have been found to accumulate lipids in the form of intracellular lipid inclusion bodies (LIBs) (13). These lipids are composed mainly of triacylglycerols (TAG) (9, 13) and may originate from the lipolysis of host lipids and/or fatty acid uptake. In fact, M. tuberculosis in the granuloma center can even accumulate lipids originating from the degradation of immune cells (20). In addition, it has been reported that M. tuberculosis internalized by foamy macrophages accumulated LIBs when it joined cell lipid droplets composed of neutral lipids (32). Lipid storage may provide the bacillus with energy via the β-oxidation pathway followed by the glyoxylate cycle, during the chronic phase and the reactivation step (3, 17). These lipids may also supply precursors for the synthesis of bacterial cell membrane lipids, which play a key role in the pathogenicity of M. tuberculosis (4, 23). To investigate the molecular basis of the virulence and pathogenicity of M. tuberculosis, it was therefore proposed to study the lipid metabolism and cell wall remodeling processes in this bacterium.The enzymes involved in the lipid degradation processes induced by this bacterium have attracted considerable attention during the last few years. Based on the complete M. tuberculosis H37Rv genome sequence (6), several open reading frames (ORFs) encoding proteins potentially involved in the lipid metabolism of this strain have been identified, among which are the two lipases from M. tuberculosis that have been purified and characterized so far. Deb et al. identified an enzyme, Rv3097c (LipY), belonging to the hormone-sensitive lipase family, which is able to hydrolyze long-chain TAG (10). A study of LIB mobilization in a lipY-deficient mutant has shown that LipY was involved in TAG hydrolysis under nutriment-deprived conditions (10). LipY may therefore be involved in the degradation of TAG stored during the dormant stage and the subsequent reactivation of the pathogen. In addition, electron microscopy immunolabeling studies of LipY clearly showed that the enzyme had a cell surface localization, thus in direct contact with the host immune system (28). The last identified lipase to date is a monoacylglycerol lipase annotated Rv0183 (7). Like LipY, Rv0183 is located in the cell wall, but its exact physiological function has not yet been elucidated. One hypothesis could be that, like some mammalian cells (e.g., adipocytes), M. tuberculosis expresses several lipolytic enzymes sequentially involved in the lipolysis of TAG (37). The Rv0183 enzyme is conserved in M. bovis (Mb0189) and M. leprae (ML2603), as well as in M. smegmatis (MSMEG_0220), a nonpathogenic mycobacterium which provides a useful model organism and a surrogate host for molecular analysis of M. tuberculosis (19). In order to decipher the cellular role of Rv0183 in M. tuberculosis H37Rv and its contribution to the lipid metabolism of this bacterium, biochemical studies were performed on the homologue MSMEG_0220. For this purpose, the MSMEG_0220 gene from M. smegmatis, encoding a protein showing 68% amino acid sequence identity with Rv0183, was cloned, and the recombinant MSMEG_0220 enzyme (rMSMEG_0220) was produced in Escherichia coli, purified, and biochemically characterized. An M. smegmatis mutant with an MSMEG_0220 disrupted gene was produced to investigate the physiological role of MSMEG_0220.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号