首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The CRL4Cdt2 Ubiquitin Ligase Mediates the Proteolysis of Cyclin-Dependent Kinase Inhibitor Xic1 through a Direct Association with PCNA
Authors:Dong Hyun Kim  Varija N Budhavarapu  Carlos R Herrera  Hyung Wook Nam  Yu Sam Kim  P Renee Yew
Institution:Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245,1. Department of Biochemistry and Protein Network Research Center, Yonsei University, Seoul 120-749, South Korea2.
Abstract:During DNA polymerase switching, the Xenopus laevis Cip/Kip-type cyclin-dependent kinase inhibitor Xic1 associates with trimeric proliferating cell nuclear antigen (PCNA) and is recruited to chromatin, where it is ubiquitinated and degraded. In this study, we show that the predominant E3 for Xic1 in the egg is the Cul4-DDB1-XCdt2 (Xenopus Cdt2) (CRL4Cdt2) ubiquitin ligase. The addition of full-length XCdt2 to the Xenopus extract promotes Xic1 turnover, while the N-terminal domain of XCdt2 (residues 1 to 400) cannot promote Xic1 turnover, despite its ability to bind both Xic1 and DDB1. Further analysis demonstrated that XCdt2 binds directly to PCNA through its C-terminal domain (residues 401 to 710), indicating that this interaction is important for promoting Xic1 turnover. We also identify the cis-acting sequences required for Xic1 binding to Cdt2. Xic1 binds to Cdt2 through two domains (residues 161 to 170 and 179 to 190) directly flanking the Xic1 PCNA binding domain (PIP box) but does not require PIP box sequences (residues 171 to 178). Similarly, human p21 binds to human Cdt2 through residues 156 to 161, adjacent to the p21 PIP box. In addition, we identify five lysine residues (K180, K182, K183, K188, and K193) immediately downstream of the Xic1 PIP box and within the second Cdt2 binding domain as critical sites for Xic1 ubiquitination. Our studies suggest a model in which both the CRL4Cdt2 E3- and PIP box-containing substrates, like Xic1, are recruited to chromatin through independent direct associations with PCNA.The eukaryotic cell cycle is positively regulated by cyclin-dependent kinases (CDKs) and negatively regulated by CDK inhibitors (CKIs) (22, 25, 27, 28). A complete knockout of all CDK inhibitor function, although as yet not attained in mammalian cells, has been accomplished in Saccharomyces cerevisiae and is shown to result in genomic instability due to premature entry into S phase (19). Conversely, the overexpression of cyclin E in mammalian cells has also been observed to induce chromosome instability (31). These studies suggest that CDK inhibitor function can play a critical role in maintaining genomic stability through the proper regulation of DNA replication initiation. Mammalian Cip/Kip-type CDK inhibitors p27 and p21 are stoichiometric inhibitors of CDK2-cyclins that regulate the entry into S phase and are targeted by ubiquitin- and proteasome-dependent proteolysis during the G1-to-S-phase transition (4, 5, 33, 35). In the frog, Xenopus laevis, three types of CDK inhibitors have been identified that share sequence and functional similarities with mammalian p27 and p21. The first type of CDK inhibitor includes the Xenopus inhibitor of CDK (p27Xic1 or Xic1) and kinase inhibitor from Xenopus (p28Kix1 or Kix1), which share ∼90% amino acid sequence identity with each other, preferentially inhibit the activity of CDK2-cyclin E or A and bind all CDK-cyclins and proliferating cell nuclear antigen (PCNAs) (30, 32). The second and third types of Xenopus CDK inhibitors are p16Xic2 and p17Xic3, which share sequence homology with p21 and p27, respectively, and exhibit restricted developmental expression but have not been extensively characterized biochemically (9).In an effort to study the molecular mechanism of Cip/Kip-type CDK inhibitor proteolysis in the context of the temporal events of DNA replication initiation, we utilize the biochemically tractable Xenopus egg extract system. This extract can recapitulate all of the events of semiconservative DNA replication and fully support protein ubiquitination and degradation in the context of DNA replication initiation (3, 36). Using this system, we have shown that during DNA polymerase switching, Xic1 is recruited to sites of DNA replication initiation through its association with proliferating cell nuclear antigen (PCNA) and is targeted for ubiquitination and degradation (6). Using a strategy of PCNA reconstitution to PCNA-depleted extracts, our studies showed that Xic1 ubiquitination and turnover required not only PCNA binding but also the ability of PCNA to be loaded at a site of DNA replication initiation by replication factor C (RFC) (6). Our previous study indicated that like mammalian p27 and p21, Xic1 could be ubiquitinated in vitro by SCFXSkp2 (21), but our subsequent studies suggested that Xenopus Skp2 (XSkp2) levels were very low in the early embryo, and XSkp2 immunodepletion did not stabilize Xic1 in the Xenopus egg extract (our unpublished observations). Therefore, we postulated that in the interphase egg extract, Xic1 was targeted for ubiquitination by an alternate ubiquitin ligase.In this study, we identify Cul4-DDB1-XCdt2 (CRL4Cdt2) as the ubiquitin ligase for Xic1 in the egg. We also identify both the critical residues of Xic1 required for association to Cdt2 and the critical lysine residues of Xic1 ubiquitinated by CRL4Cdt2. Importantly, we report a direct interaction between the C-terminal domain of Cdt2 and PCNA and show that the C-terminal domain of Cdt2 is required to promote the proteolysis of Xic1. Our studies suggest a model for Xic1 ubiquitination and proteolysis which requires the Xic1 PIP box for association with PCNA and Xic1 chromatin recruitment, the Xic1 sequences flanking the PIP box for association with Cdt2, specific lysine residues within the Cdt2 binding domain of Xic1 for efficient Xic1 ubiquitination, and a direct association between the Cdt2 C terminus and PCNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号