首页 | 本学科首页   官方微博 | 高级检索  
     


Opposing Roles of Dnmt1 in Early- and Late-Stage Murine Prostate Cancer
Authors:Shannon R. Morey Kinney  Michael T. Moser  Marien Pascual  John M. Greally  Barbara A. Foster  Adam R. Karpf
Affiliation:Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263,1. Departments of Genetics (Computational Genetics) and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 104612.
Abstract:Previous studies have shown that tumor progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model is characterized by global DNA hypomethylation initiated during early-stage disease and locus-specific DNA hypermethylation occurring predominantly in late-stage disease. Here, we utilized Dnmt1 hypomorphic alleles to examine the role of Dnmt1 in normal prostate development and in prostate cancer in TRAMP. Prostate tissue morphology and differentiation status was normal in Dnmt1 hypomorphic mice, despite global DNA hypomethylation. TRAMP; Dnmt1 hypomorphic mice also displayed global DNA hypomethylation, but were characterized by altered tumor phenotype. Specifically, TRAMP; Dnmt1 hypomorphic mice exhibited slightly increased tumor incidence and significantly increased pathological progression at early ages and, conversely, displayed slightly decreased tumor incidence and significantly decreased pathological progression at advanced ages. Remarkably, hypomorphic Dnmt1 expression abrogated local and distant site macrometastases. Thus, Dnmt1 has tumor suppressor activity in early-stage prostate cancer, and oncogenic activity in late stage prostate cancer and metastasis. Consistent with the biological phenotype, epigenomic studies revealed that TRAMP; Dnmt1 hypomorphic mice show dramatically reduced CpG island and promoter DNA hypermethylation in late-stage primary tumors compared to control mice. Taken together, the data reveal a crucial role for Dnmt1 in prostate cancer and suggest that Dnmt1-targeted interventions may have utility specifically for advanced and/or metastatic prostate cancer.Changes in DNA methyltransferase (Dnmt) expression and DNA methylation are observed in human prostate cancer (3, 38, 41). Of particular interest, genes with tumor suppressive function become hypermethylated and silenced, which correlates with the development of specific disease phenotypes (2, 3, 38). Although an association between prostate cancer and alterations in DNA methylation has been established, in vivo models are required to determine whether these changes functionally contribute to the disease. In this context, studies in which pharmacological inhibitors of Dnmts were shown to inhibit prostate cancer in murine models have proven informative (34, 56). However, it remains unknown whether genetic disruption of epigenetic components, such as Dnmts, also impacts prostate cancer development. This is a critical question since the pharmacological inhibitors of Dnmts have pleiotropic effects, including those unrelated to activation of methylation-silenced genes (21, 23, 31). Moreover, no studies to date have examined whether Dnmts or DNA methylation play roles in normal prostate development; this information is vital to fully understanding the effects that inhibiting DNA methylation may have on prostate cancer.Dnmt1 is a maintenance DNA methyltransferase that propagates preexisting DNA methylation patterns in genomic DNA (44). Dnmt1 also is involved in de novo DNA methylation in cancer cells and interacts with other key epigenetic control molecules, including histone-modifying enzymes (11, 19). Murine models have been used to investigate the in vivo functions of Dnmt1. Complete genetic knockout of Dnmt1 is embryonic lethal in mice (29). However, hypomorphic expression of Dnmt1 allows murine development to proceed but causes global DNA hypomethylation and impacts cancer development and progression (7, 14, 28). Specifically, hypomorphic expression of Dnmt1 can lead to the development of lymphoma (14). Furthermore, crossing Dnmt1 hypomorphic mice with murine tumor models alters tumor progression, resulting in either increased or decreased tumor development, depending on the disease stage and tissue site (1, 7, 53). For example, reduced expression of Dnmt1 dramatically decreases intestinal polyp formation in ApcMin/+ mice, either alone or in combination with 5-aza-2′-deoxycytidine treatment (7, 27). However, it was later noted that reduced expression of Dnmt1 has a dual effect on intestinal cancer in ApcMin/+ mice, in which the development of early stage intestinal microadenomas is accelerated, whereas the formation of adenomatous polyps is significantly reduced (53). In addition, ApcMin/+ Dnmt1 hypomorphic mice develop liver cancer associated with the loss of heterozygosity of Apc (53). Similarly, in Dnmt1 hypomorphic mice crossed to Mlh1−/− mice, a dual effect was noted wherein mice developed fewer intestinal cancers but displayed increased T- and B-cell lymphomas (52). In addition, a recent study demonstrated that hypomorphic Dnmt1 expression is associated with reduced squamous cell carcinoma of the tongue and esophagus, resulting in decreased invasive cancer (1). Taken together, the data suggest that Dnmt1 has diverse effects on cancer development, which are dependent on tissue context and tumor stage.TRAMP is a well-established transgenic prostate cancer model driven by prostate-specific expression of the simian virus 40 (SV40) T/t oncogenes (16). TRAMP mice are characterized by Dnmt mRNA and protein overexpression, altered DNA methylation, and altered gene expression during prostate cancer development (2, 33, 35, 37). Of the three enzymatically active Dnmts, Dnmt1 shows the greatest level of overexpression in TRAMP, and this correlates with Rb inactivation, a key genetic event driving prostate cancer in the model (37). Most critically, global DNA hypomethylation occurs during early and late disease stages, while DNA hypermethylation occurs primarily at late disease stages in TRAMP (35).Here, we utilized Dnmt1 hypomorphic mice and the TRAMP model to assess the role of DNA methylation in both normal prostatic development and prostate cancer. The Dnmt1 hypomorphic mouse model used involves two different hypomorphic alleles (N and R), resulting in four genotypes with progressively reduced DNA methylation (Dnmt1+/+, Dnmt1R/+, Dnmt1N/+, and Dnmt1N/R) (7, 52). The N allele consists of a PGK-Neo insertion that deletes a portion of exon 4 of Dnmt1, resulting in severely reduced Dnmt1 expression, while the R allele involves a lacO insertion into intron 3 of Dnmt1, which partially reduces Dnmt1 expression (7, 52). Based on our previous work establishing the timing of DNA hypomethylation and DNA hypermethylation in TRAMP, we hypothesized that hypomorphic Dnmt1 expression in TRAMP may have tumor-promoting effects at early disease stages and tumor-inhibitory effects at later stages of prostate cancer progression. Our data are consistent with this hypothesis and, more importantly, reveal a critical and unanticipated role for Dnmt1 in prostate cancer metastasis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号