首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dominant Negative Mutants of the Murine Cytomegalovirus M53 Gene Block Nuclear Egress and Inhibit Capsid Maturation
Authors:Mirela Popa  Zsolt Ruzsics  Mark L?tzerich  Lars D?lken  Christopher Buser  Paul Walther  Ulrich H Koszinowski
Institution:Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Genzentrum, Feodor Lynen Str. 25, 81377 Munich, Germany,1. Institut für Mikrobiologie, Abteilung Virologie und Zentrale Einrichtung Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany2.
Abstract:The alphaherpesvirus proteins UL31 and UL34 and their homologues in other herpesvirus subfamilies cooperate at the nuclear membrane in the export of nascent herpesvirus capsids. We studied the respective betaherpesvirus proteins M53 and M50 in mouse cytomegalovirus (MCMV). Recently, we established a random approach to identify dominant negative (DN) mutants of essential viral genes and isolated DN mutants of M50 (B. Rupp, Z. Ruzsics, C. Buser, B. Adler, P. Walther and U. H. Koszinowski, J. Virol 81:5508-5517). Here, we report the identification and phenotypic characterization of DN alleles of its partner, M53. While mutations in the middle of the M53 open reading frame (ORF) resulted in DN mutants inhibiting MCMV replication by ∼100-fold, mutations at the C terminus resulted in up to 1,000,000-fold inhibition of virus production. C-terminal DN mutants affected nuclear distribution and steady-state levels of the nuclear egress complex and completely blocked export of viral capsids. In addition, they induced a marked maturation defect of viral capsids, resulting in the accumulation of nuclear capsids with aberrant morphology. This was associated with a two-thirds reduction in the total amount of unit length genomes, indicating an accessory role for M53 in DNA packaging.Our understanding of herpesvirus morphogenesis is mainly derived from studies of Alphaherpesvirinae, such as herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV). A faster replication cycle and a more productive infection in tissue culture aided genetic analysis of alphaherpesvirus morphogenesis. In addition, deletion mutants of key morphogenesis genes in alphaherpesviruses often maintain basic replication capacity, whereas the mutations of their homologues in Betaherpesvirinae or Gammaherpesvirinae mostly result in a lethal phenotype (for the UL31 and the UL34 family, see references 3, 6, 9-11, 16, 20, 21, and 42). These genes became amenable to comprehensive genetic analysis in betaherpesviruses only after their genomes were cloned as infectious bacterial artificial chromosomes (BACs), which obviated the need to generate replication-competent intermediates or complementing cell lines (3, 21, 23). BAC-based mutagenesis allowed viability screens mapping essential genes (8, 43) or even functional sites of essential genes in cytomegaloviruses (3, 21). However, these approaches cannot easily be applied to reveal the null phenotypes in the context of virus replication, as mutant viruses are not easily reconstituted. In addition, deletion of an essential viral gene can reveal the null phenotype of only the first of perhaps several essential functions during virus morphogenesis. This problem can be addressed to some extent by using dominant negative (DN) mutations (36). DN mutants are loss-of-function mutants that induce a null phenotype in the presence of the wild-type (wt) allele (14). Analysis of phenotypes induced by DN mutants proved to be extremely useful in genetics and cell biology, signaling, and biochemistry. Such inhibitory mutants of cellular proteins are often designed based on knowledge on the structural or functional role of a well-characterized protein domain. Unfortunately, we lack the structural information that would allow knowledge-based design of viral DN mutants for the majority of herpesvirus gene products. Thus, we established a random screen consisting of three steps to identify mutants of viral genes with DN potential (36): (i) a library of mutants is generated by random insertion of 5 amino acids (aa) or a stop codon into the open reading frame (ORF) of interest using transposon mutagenesis, (ii) nonfunctional mutants are identified by cis complementation of the respective deletion mutant mouse cytomegalovirus (MCMV) BAC, and (iii) nonfunctional mutants are tested for their inhibitory potential upon reconstitution of the wt BAC cloned genomes. In the last screen, mutants that have a specific inhibitory effect on the activity of the wt allele are selected. The specific phenotype obtained upon induction of the inhibitory mutants in the context of virus replication is then verified and further characterized using a tetracycline (Tet) regulon-based viral conditional expression system (36, 37).One intriguing aspect of herpesvirus morphogenesis is the transition of capsids from the nuclear to the cytoplasmic phase of virus morphogenesis. Two conserved nonstructural proteins, the homologues of the membrane protein pUL34 and its nuclear partner protein pUL31, form a nuclear egress complex (NEC) (18, 27, 42), which is required for primary envelopment and export of nuclear capsids to the cytoplasm (reviewed in references 24 and 25). Recent studies have revealed that the homologues of alphaherpesvirus pUL34 and pUL31, the M50 and the M53 gene products of the betaherpesvirus MCMV (pM50 and pM53, respectively) and the BFRF1 and the BFLF2 gene products of the gammaherpesvirus Epstein-Barr virus (EBV), apparently share the major functions of these two proteins. The lack of one or both proteins of the NEC generally results in the retention of viral capsids in the nucleus. This is lethal for beta- and gammaherpesvirus production (3, 9-11, 16, 18, 21, 27, 35, 42).The details of the mechanisms by which the NEC proteins mediate capsid export through the nuclear envelope are poorly understood. We (3, 21, 36, 38) and others (1, 19, 34) have started to dissect details of the NEC function using a genetic approach based on subtle mutagenesis of the respective genes. Analysis of the MCMV M50 gene by comprehensive mutagenesis localized two different functional sites. They were the M53 binding site within the N-terminal domain of M50, as well as the transmembrane region at its C terminus (3). Liang and Baines located the respective binding site in HSV-1 UL34 at aa 137 to 181 (19). Our approach, based on screens for DN mutants, identified a proline-rich sequence (aa 179 to 207) in the M50 gene product as an additional essential region (36). A recombinant virus expressing an M50 mutant lacking this site was defective in capsid egress from the nucleus despite the presence of the wt M50 protein. Consequently, the production of infectious particles after infection was reduced by more than 2 orders of magnitude. The UL34 homologues of alpha- and gammaherpesviruses lack a similar polyproline motif, but the result was confirmed by mutating the human cytomegalovirus (HCMV) homologue UL50 at the corresponding region, which is conserved within betaherpesviruses (36). The M50 mutants lacking the proline-rich motif still bind and colocalize to their respective NEC partner, pM53. Interestingly, Bjerke and coworkers also provided genetic evidence for the existence of at least one additional, yet-unknown, but essential functional entity in pUL34 of HSV-1, besides its known pUL31 binding activity, using a screen based on charged-cluster mutations (1). Further analysis of one of the noncomplementing charged-cluster mutants carrying the defect in the N-terminal domain of pUL34 also revealed a DN activity and suggested a new functional site involved in membrane curvature formation, together with the C-terminal domain of UL31 (34).The genetic analysis of M53 by Tn7-based linker scanning mutagenesis, followed by a cis complementation assay, localized the M50-binding site between aa 112 and 137 within the first of the four conserved regions (CRs) shared among the herpesvirus UL31 homologues (21). This analysis, together with a study we performed for further characterization of pM50/pM53 interaction, revealed that the large C-terminal part of pM53, comprising CR2 to -4, must carry at least one additional, yet-unknown, but essential functional site (21, 38).Here, we screened loss-of-function mutants of the MCMV M53 gene to retrieve M53 alleles with DN activity to localize this new functional domain. Mutants with a very strong inhibitory potential accumulated within CR4 of pM53 close to its C terminus. These CR4 mutants induced a block of capsid export from the nucleus. In addition, we could associate these mutations with the induction of a defect in capsid maturation and/or DNA packaging. These data suggested that pM53 is not only crucial for nuclear egress, but also involved in earlier steps of MCMV morphogenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号