首页 | 本学科首页   官方微博 | 高级检索  
     


Thymic Alterations in GM2 Gangliosidoses Model Mice
Authors:Seiichi Kanzaki  Akira Yamaguchi  Kayoko Yamaguchi  Yoshitsugu Kojima  Kyoko Suzuki  Noriko Koumitsu  Yoji Nagashima  Kiyotaka Nagahama  Michiko Ehara  Yoshio Hirayasu  Akihide Ryo  Ichiro Aoki  Shoji Yamanaka
Affiliation:1. Department of Pathology, Yokohama City University School of Medicine, Yokohama, Japan.; 2. Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.; 3. Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.;Massachusetts General Hospital and Harvard Medical School, United States of America
Abstract:

Background

Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids. We have previously found that the progressive neurologic disease induced in Hexb−/− mice, an animal model for Sandhoff disease, is associated with the production of pathogenic anti-glycolipid autoantibodies.

Methodology/Principal Findings

In our current study, we report on the alterations in the thymus during the development of mild to severe progressive neurologic disease. The thymus from Hexb−/− mice of greater than 15 weeks of age showed a marked decrease in the percentage of immature CD4+/CD8+ T cells and a significantly increased number of CD4+/CD8 T cells. During involution, the levels of both apoptotic thymic cells and IgG deposits to T cells were found to have increased, whilst swollen macrophages were prominently observed, particularly in the cortex. We employed cDNA microarray analysis to monitor gene expression during the involution process and found that genes associated with the immune responses were upregulated, particularly those expressed in macrophages. CXCL13 was one of these upregulated genes and is expressed specifically in the thymus. B1 cells were also found to have increased in the thy mus. It is significant that these alterations in the thymus were reduced in FcRγ additionally disrupted Hexb−/− mice.

Conclusions/Significance

These results suggest that the FcRγ chain may render the usually poorly immunogenic thymus into an organ prone to autoimmune responses, including the chemotaxis of B1 cells toward CXCL13.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号