首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational Mapping of UL130 of Human Cytomegalovirus Defines Peptide Motifs within the C-Terminal Third as Essential for Endothelial Cell Infection
Authors:Andrea Schuessler  Kerstin Laib Sampaio  Laura Scrivano  Christian Sinzger
Institution:Institut für Medizinische Virologie, Eberhard-Karls-Universität, Tübingen, Germany,1. Max von Pettenkofer-Institut für Virologie, Ludwig-Maximilians-Universität, Munich, Germany2.
Abstract:The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.Human cytomegalovirus (HCMV) is a widespread betaherpesvirus that causes lifelong persistent infections with occasional reactivations. While HCMV infection is usually clinically unapparent in the immunocompetent host, it can cause severe disseminated infections under conditions of immunosuppression, with manifestations in the lung, retina, and gastrointestinal tract, among others (12). Various cell types support viral replication, including epithelial cells and endothelial cells (ECs), smooth muscle cells, fibroblasts, and cells of hematopoietic origin (13, 14, 18, 19, 25, 26, 37). Among these target cells, endothelial cells are assumed to contribute particularly to hematogenous dissemination of HCMV (24).While recent clinical HCMV isolates are characterized by this broad cell tropism, the target cell range becomes restricted during long-term propagation on fibroblasts (28, 33). The underlying mechanism for this cell culture adaptation is a modulation within the viral genes UL128, UL130, and UL131A (8, 11). These three genes have been shown to be essential for infection of granulocytes, dendritic cells, epithelial cells, and endothelial cells but are dispensable for infection of fibroblasts (1, 9, 11, 34, 35). The encoded proteins pUL128, pUL130, and pUL131A were reported to form a complex with the viral glycoproteins gH and gL that is distinct from the glycoprotein complex gCIII (gH/gL/gO) (35). Whereas poorly endotheliotropic HCMV strains bear just the gH/gL/gO complex in their envelopes, highly endotheliotropic strains bear both gCIII variants: gH/gL/gO and gH/gL/pUL128-131A. Deletion of any of the three genes UL128-131A results in loss of EC tropism (11), most likely because only a complete complex of gH/gL and pUL128, pUL130, and pUL131A can efficiently function in endocytic entry in ECs (21). However, functional sites within the proteins (e.g., mediating binding to the viral complex partners or interaction with a putative cellular receptor) have not yet been identified. One approach to search for candidate protein-protein interaction sites is charge-cluster-to-alanine (CCTA) mutagenesis. This method is based on the assumption that clusters of charged amino acids tend to be exposed in the tertiary structure of a protein and are thus likely to be sites of interaction with other proteins. Replacement of these charged amino acids by uncharged alanines should then target protein-protein interaction sites without destroying the protein backbone (5, 7). Applying this method to HCMV pUL128, we were able to identify a central core region within pUL128 essential for EC infection as well as contributing sites in the N-terminal half and the C terminus of the protein (22). We now aimed to extend the study to the scanning of UL130 by markerless mutagenesis in the context of a highly endotheliotropic HCMV BACmid, TB40-BAC4. The resulting mutant viruses were then characterized with regard to their ability to infect ECs to identify the relevant parts of the protein.With regard to the role of UL130 in EC infection by endocytosis, the C-terminal part of pUL130 was of special interest. A frameshift mutation that changes the last 11 amino acids (aa) of pUL130 is the most prominent difference between the poorly endotheliotropic HCMV strain Towne and the highly endotheliotropic strain HCMV-TB40-BAC4 in this region (8, 11, 27). Rhee and Davis have described a cell-penetrating pentapeptide (CPP) motif (PFVYLI) mediating internalization by endocytosis, which is clathrin and caveolin independent but may involve lipid rafts (17). Not only do the last five amino acids of pUL130 (PNLIV) bear a striking similarity to this motif, but also the entry of HCMV into ECs has been reported to occur by an endocytic pathway (20, 23). Thus, we hypothesized that the pentapeptide motif PNLIV in pUL130 might be involved in mediating endocytic uptake of HCMV in ECs, and if so, deletion of this motif should result in a nonendotheliotropic virus. A number of CPPs that are thought to be taken up by endocytosis have now been described, including VPMLK, PMLKE, VPTLK, KLPVM, and others (32). These CPPs all bear some similarity, but the exact amino acid sequence seems to be irrelevant. We thus hypothesized for UL130 that a scrambled mutant (PNLIV changed to PINVL) should still be able to mediate endocytosis of HCMV in ECs. To test these assumptions we generated a series of mutant viruses where the PNLIV motif was either deleted, scrambled (PNLIV changed to PINVL), or exchanged against a known CPP (PFVYLI 17]) and characterized them with regard to EC infectivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号