首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phagocytosis of Cryptococcus neoformans by,and Nonlytic Exocytosis from,Acanthamoeba castellanii
Authors:Cara J Chrisman  Mauricio Alvarez  Arturo Casadevall
Institution:Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
Abstract:Cryptococcus neoformans, an encapsulated, pathogenic yeast, is endowed with a variety of virulence factors, including a polysaccharide capsule. During mammalian infection, the outcome of the interaction between C. neoformans and macrophages is central to determining the fate of the host. Previous studies have shown similarities between the interaction of C. neoformans with macrophages and with amoebae, resulting in the proposal that fungal virulence for mammals originated from selection by amoeboid predators. In this study, we investigated the interaction of C. neoformans with the soil amoeba Acanthamoeba castellanii. Comparison of phagocytic efficiency of the wild type, nonencapsulated mutants, and complemented strains showed that the capsule was antiphagocytic for amoebae. Capsular enlargement was associated with a significant reduction in phagocytosis, suggesting that this phenomenon protects against ingestion by phagocytic predators. C. neoformans var. neoformans cells were observed to exit amoebae several hours after ingestion, in a process similar to the recently described nonlytic exocytosis from macrophages. Cryptococcal exocytosis from amoebae was dependent on the strain and on actin and required fungal viability. Additionally, the presence of a capsule was inversely correlated with the likelihood of extrusion in certain strains. In summary, nonlytic exocytosis from amoebae provide another parallel to observations in fungus-macrophage interactions. These results provide additional support for the notion that some mechanisms of virulence observed during mammalian infection originated, and were selected for, by environmental interactions.The encapsulated yeast Cryptococcus neoformans is an environmental organism that is capable of causing human disease. This fungus is a facultative intracellular pathogen with a unique pathogenic strategy, despite no obvious need for replication in an animal host as part of its life cycle (10). C. neoformans is known to interact with protozoa, some of which have been shown to be effective predators for this fungus (6, 26), and amoebae appear to be important for the control of C. neoformans in the environment (28). Previously, we reported that the interaction of C. neoformans with Acanthamoeba castellanii directly paralleled the interaction with human macrophages (33). Similarities between C. neoformans interactions with amoebae and macrophages included intracellular replication in a phagosome and the release of polysaccharide-containing vesicles into the cytoplasm (33). Furthermore, passage of avirulent C. neoformans and Histoplasma capsulatum through slime mold and amoebae was shown to increase virulence in mice (31, 32). On the basis of these observations, it was proposed that the capacity for mammalian virulence emerged from interactions with phagocytic predators, such as amoebae and slime mold, in the environment (7, 17, 30). Consequently, single-cell protists have emerged as important systems for the study of C. neoformans virulence, and subsequent studies have investigated the interaction of this fungus with slime mold and paramecia (9, 31). Additional evidence for this concept comes from studies of insect fungal pathogens, which suggest that the capacity for insect pathogenicity may follow preadaptation from interactions with amoebae in the environment (4). Understanding the mechanisms by which virulence emerges in environmental microbes is important considering that global warming has been hypothesized to bring about new fungal diseases in the coming century (13).Recent work in our laboratory and in that of Robin May simultaneously uncovered a novel strategy of avoiding macrophage killing whereby yeast cells were expulsed without lysis of the host cell (2, 19). The process is remarkable in that extrusion of the C. neoformans-filled phagosome is accompanied by the survival of both the host cells and the yeast cells. Phagosome extrusion or fungal exocytosis appears to be a C. neoformans-dictated event that is dependent on both the presence of the polysaccharide capsule and on the depolymerization of actin. A corollary of the hypothesis that C. neoformans virulence emerged from interactions with environmental predators is that phenomena observed with mammalian cells are likely to have a counterpart in free-living phagocytic cells. Consequently, the observation of an apparently unique event such as phagosomal extrusion from mammalian macrophages suggested a need to search for similar events in C. neoformans interactions with environmental phagocytic predators.In this study, we investigated parallels between the intracellular pathogenic strategy of C. neoformans in both macrophages and A. castellanii, focusing on characterizing the impact of the capsule on protozoan phagocytosis and on ascertaining whether fungal cells could also exit amoebae, including the role of the capsule in that possible mechanism. Using time-lapse microscopy, we observed the exocytosis of C. neoformans from A. castellanii. While there are significant differences in the nonlytic exocytosis process when comparing amoebae and macrophages, the observation of this phenomenon in amoebae provides additional support for the idea that the virulence of C. neoformans was selected for, and is maintained, by interactions in the environment with other soil organisms.(This research was conducted by Cara Chrisman in partial fulfillment of the requirements for a Ph.D. from the Sue Golding Graduate Division of Medical Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY awarded in 2010].)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号