首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of Mycobacterium ulcerans with Mosquito Species: Implications for Transmission and Trophic Relationships
Authors:John R Wallace  Matthew C Gordon  Lindsey Hartsell  Lydia Mosi  M Eric Benbow  Richard W Merritt  Pamela L C Small
Institution:Department of Biology, Millersville University, Millersville, Pennsylvania 17551,1. Department of Microbiology, University of Tennessee, Knoxville, Tennessee,2. Department of Biology, University of Dayton, Dayton, Ohio 45469,3. Department of Entomology, Michigan State University, East Lansing, Michigan 48824,4. Noguchi Memorial Institute for Medical Research, Legon, Ghana5.
Abstract:Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe necrotizing skin disease that causes significant morbidity in Africa and Australia. Person-to-person transmission of Buruli ulcer is rare. Throughout Africa and Australia infection is associated with residence near slow-moving or stagnant water bodies. Although M. ulcerans DNA has been detected in over 30 taxa of invertebrates, fish, water filtrate, and plant materials and one environmental isolate cultured from a water strider (Gerridae), the invertebrate taxa identified are not adapted to feed on humans, and the mode of transmission for Buruli ulcer remains an enigma. Recent epidemiological reports from Australia describing the presence of M. ulcerans DNA in adult mosquitoes have led to the hypothesis that mosquitoes play an important role in the transmission of M. ulcerans. In this study we have investigated the potential of mosquitoes to serve as biological or mechanical vectors or as environmental reservoirs for M. ulcerans. Here we show that Aedes aegypti, A. albopictus, Ochlerotatus triseriatus, and Culex restuans larvae readily ingest wild-type M. ulcerans, isogenic toxin-negative mutants, and Mycobacterium marinum isolates and remain infected throughout larval development. However, the infections are not carried over into the pupae or adult mosquitoes, suggesting an unlikely role for mosquitoes as biological vectors. By following M. ulcerans through a food chain consisting of primary (mosquito larvae), secondary (predatory mosquito larva from Toxorhynchites rutilus septentrionalis), and tertiary (Belostoma species) consumers, we have shown that M. ulcerans can be productively maintained in an aquatic food web.Infection with Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is associated with residence near stagnant and slow-moving water bodies in areas in which the disease is endemic (5, 36, 40, 45, 50). A plasmid-encoded macrolide toxin, mycolactone, is the primary virulence determinant of M. ulcerans (8, 41). Biting aquatic insects, such as several taxa in the Belostomatidae and Naucoridae families (Hemiptera), have been suggested as possible vectors of M. ulcerans in several laboratory experiments (16, 19, 20, 24, 31, 32); however, there is little empirical evidence from field studies to support the contention that these biting insects vector M. ulcerans to humans (2). In Melbourne, Australia, recent epidemiological evidence suggests that mosquitoes may serve as vectors in the transmission of BU disease (10, 11, 12, 34, 35). In this study, 957 pools consisting of over 11,000 mosquitoes of four different species were collected and tested by quantitative PCR (qPCR) for the presence of M. ulcerans DNA, and positive results were obtained from 48 of 957 pools tested (10). Of the 48 positive pools, 13 were positive for PCR directed against two insertion sequences (IS2404 and IS2606) as well as against sequence based on the ketoreductase domain of the mycolactone toxin genes. Because all of these target sequences are present multiple times in the genome, it was difficult to assign genome equivalents to these results. However, data from laboratory experiments suggested that 10 to 100 M. ulcerans isolates per mosquito were present in the positive pools. Epidemiological work also suggested a seasonal relationship between Buruli ulcer and mosquito-vectored diseases in Australia (12). These studies are extremely provocative and raise a number of questions for further work. What is the prevalence of M. ulcerans in other invertebrate taxa in the same environment? What is the infection rate in equal numbers of mosquitoes collected from areas in which the disease is not endemic? Is it possible to obtain physical evidence for the presence of M. ulcerans through microscopy or culture of mosquitoes in areas in which the disease is endemic, and, finally, what can we learn from laboratory studies concerning the interaction between mosquitoes and M. ulcerans?The recent work from Australia suggesting that M. ulcerans is spread by mosquitoes is particularly significant because adult mosquitoes are the most important group of insects in the spread of human disease. They may serve as biological vectors that provide a major environment for pathogen replication, as in malaria or yellow fever, or as mechanical vectors that carry organisms between hosts without serving as a site of replication (1, 4, 7, 9, 38). Larval mosquitoes are common in habitats associated with BU disease, most notably lentic or standing water habitats, and feed by filtering particles in the water using labral head fans (21). Members of some genera (i.e., Anopheles) aggregate at the air-water interface in microlayers near plant stems and algal mats (27, 28, 46), where they feed on microorganisms such as bacteria and algae (47). Because of their collecting-filtering feeding mode, there is potential for larvae to consume M. ulcerans and concentrate mycobacteria through their feeding activities (22, 23).In Ghana, the occurrence of M. ulcerans among invertebrate communities in lentic habitats has been documented from regions in Ga West and Ga East Districts in which the disease is endemic as well as those in which it is not endemic (2, 49) but not in geographically distinct areas in which the disease is not endemic such as the Volta region (49). M. ulcerans has been identified in a suite of environmental samples such as filtered water, biofilms, and algae as well as among a broad spectrum of invertebrate taxa, including both larval and adult mosquitoes (2, 11, 17, 49). However, the replication and trophic movement of M. ulcerans within these environmental samples and invertebrate communities have not been experimentally investigated. Conceptual models have been proposed that assume that the primary consumers of M. ulcerans (e.g., mosquito larvae, cladocerans, and chironomid larvae) may feed on bacteria and algae in biofilms, filter suspended matter from the water column, and then initiate the passage of M. ulcerans through an aquatic food web (2, 22, 31). This model predicts the movement of M. ulcerans through secondary and tertiary consumers and implies a complex trophic relationship in the ecology of M. ulcerans as well as an important role of aquatic invertebrates in the disease ecology of M. ulcerans.In the studies reported here, we have explored the role of mosquitoes as biological or mechanical vectors of M. ulcerans, as well as the potential of mosquito larvae to play a central role in the movement of M. ulcerans through an aquatic food web. In order to investigate the ability of mosquito larvae to ingest and maintain M. ulcerans within their digestive tract as well as to persist throughout the mosquito development cycle, we took advantage of the fact that mosquito larvae naturally feed upon bacteria. Results presented here show that strains of M. ulcerans from Africa and Australia, as well as Mycobacterium marinum, were maintained at high levels in the larval mosquito gut for 6 days. However, neither M. ulcerans nor M. marinum was detected in adult mosquitoes that were infected in the larval stage. These results suggest that mosquitoes are unlikely to serve as biological vectors of M. ulcerans.We further developed a model for following the passage of M. ulcerans through a series of consumers to determine whether M. ulcerans could be passed up a trophic chain from primary to tertiary consumers. In this model, we conducted similar experiments using four species of nonpredatory mosquito larvae, Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), Ochlerotatus triseriatus (Theobald), and Culex restuans (Theobald), as primary consumers. These larvae were infected with isogenic wild-type (WT) and toxin-negative isolates of M. ulcerans and of M. marinum, the closest relative to M. ulcerans (13, 14, 51). We have shown that M. ulcerans in mosquito larvae survive passage through secondary and tertiary consumers, thus providing the first laboratory evidence that M. ulcerans has the potential to move between and be maintained within different species in an aquatic food web.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号