Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
| |
Authors: | Serafín Gutiérrez Michel Yvon Ga?l Thébaud Baptiste Monsion Yannis Michalakis Stéphane Blanc |
| |
Affiliation: | 1. Unité Mixte de Recherche BGPI, INRA-CIRAD-SupAgro, TA A-54/K, Campus International de Baillarguet, Montpellier, France.; 2. Unité Mixte de Recherche GEMI 2724, CNRS-IRD, Avenue Agropolis, B.P. 64501, Montpellier, France.;The Samuel Roberts Noble Foundation, United States of America |
| |
Abstract: | Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host. |
| |
Keywords: | |
|
|