首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation of mineralized bone nodules by rat calvarial osteoblasts decreases with donor age due to a reduction in signaling through EP(1) subtype of prostaglandin E(2) receptor.
Authors:M Fujieda  M Kiriu  S Mizuochi  K i Hagiya  H Kaneki  H Ide
Institution:Department of Hygienic Chemistry, School of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan.
Abstract:The effects of prostaglandin E(2) (PGE(2)) on the parameters for proliferation and differentiation were studied in calvarial osteoblast-like cells isolated from rats of various ages. In cells not treated with PGE(2), it was found that mineralized bone nodule (BN) formation, alkaline phosphatase (ALP) activity, and the incorporation rate of (3)H]thymidine into the cells sharply decreased with the age of the cell donor at 6-50 weeks and then remained at a relatively constant level up to 120 weeks. Before studying the effects of PGE(2) on these parameters, we determined the change in the levels of PGE(2) produced by the untreated cells during the culture period and found that the endogenous PGE(2) reached a maximum on the 4th day of the culture, regardless of the cell donor age, followed by a sharp decrease. The endogenous production was blocked by pretreatment with a cyclooxygenase-2 (COX-2) inhibitor, NS-398, indicating the generation of PGE(2) through a COX-2 pathway. The area of BN was effectively suppressed by NS-398 in the cells from 10- to 35-week-old rats, whereas it was enhanced in the cells from 90- to 120-week-old rats. Treatment with PGE(2 )markedly increased the BN formation and the ALP activity in the cells from 4- to 35-week-old rats (defined as young rats). By contrast, PGE(2) decreased (3)H]thymidine incorporation into the cells from young rats. The area of BN and the ALP activity decreased significantly, whereas (3)H]thymidine incorporation into the cells increased by 60-80% in the cells of 80- to 120-week-old rats (defined as aged rats). The stimulatory effects on the cell differentiation and the inhibitory effect on the proliferation in the cells from young rats was mimicked by an EP(1) agonist, 17-phenyl-omega-trinor PGE(2), while an EP(2)/EP(4) agonist, 11-deoxy-PGE(1) and an adenylate cyclase activator, forskolin suppressed the differentiation and enhanced the proliferation regardless of the cell donor age. PGE(2), 11-deoxy-PGE(1) and forskolin, but not 17-phenyl-omega-trinor PGE(2) increased cyclic adenosine monophosphate (cAMP) production. Generation of inositol 1, 4,5-triphosphate (IP(3)) was stimulated by 17-phenyl-omega-trinor PGE(2) or PGE(2), but not by 11-deoxy-PGE(1) or forskolin increased cAMP production in the cells from young rats. By contrast, PGE(2 )had little effect on IP(3 )generation in aged rats. From the overall results, we concluded that PGE(2) exerts stimulatory and inhibitory effects on differentiation through the EP(1)-IP(3) pathway and EP(2)/EP(4)-cAMP pathway, respectively, in the cells from young rats. The EP(1)-IP(3) pathway seems to be inactive in the cells from aged rats.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号