首页 | 本学科首页   官方微博 | 高级检索  
     


Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions
Authors:Chang Shu-Chun  Mulloy Barbara  Magee Anthony I  Couchman John R
Affiliation:Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.
Abstract:Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs) for their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed. It was determined that key residues in human (h) Shh involved in heparin and HSPG syndecan-4 binding and biological activity included the well known cationic Cardin-Weintraub motif (lysines 32-38) but also a previously unidentified major role for lysine 178. The activity of Shh mutated in these residues was tested by quantitation of alkaline phosphatase activity in C3H10T1/2 cells differentiating into osteoblasts and hShh-inducible gene expression in PANC1 human pancreatic ductal adenocarcinoma cells. Mutated hShhs such as K37S/K38S, K178S, and particularly K37S/K38S/K178S that could not interact with heparin efficiently had reduced signaling activity compared with wild type hShh or a control mutation (K74S). In addition, the mutant hShh proteins supported reduced proliferation and invasion of PANC1 cells compared with control hShh proteins, following endogenous hShh depletion by RNAi knockdown. The data correlated with reduced Shh multimerization where the Lys-37/38 and/or Lys-178 mutations were examined. These studies provide a new insight into the functional roles of hShh interactions with HSPGs, which may allow targeting this aspect of hShh biology in, for example, pancreatic ductal adenocarcinoma.
Keywords:Glycosaminoglycan   Heparan Sulfate   Heparin-binding Protein   Pancreatic Cancer   Proteoglycan   Morphogen
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号