首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum polulations, soil microbial communities and soil enzyme activities
Authors:Naseby D C  Pascual J A  Lynch J M
Affiliation:School of Biological Sciences, University of Surrey, Guildford, UK.
Abstract:Five strains of Trichoderma with known biocontrol activities were assessed for their effect upon pea growth and their antagonistic activity against large Pythium ultimum inocula. The effect of Trichoderma inocula upon the indigenous soil microflora and soil enzyme activities in the presence and absence of Pythium is assessed. In the absence of Pythium, Trichoderma strain N47 significantly increased the wet shoot weight by 15% but did not significantly affect the dry weight, whilst strains T4 and N47 significantly increased the root weights by 22% and 80%) respectively. Strains TH1 and N47 resulted in significantly greater root lengths. Pythium inoculation significantly reduced the root length and the number of lateral roots and nodules, and significantly increased the root and rhizosphere soil fungal populations. Pythium inoculation significantly reduced the plant wet and dry shoot weights and significantly increased the wet and the dry shoot/root ratio. All the Trichoderma strains reduced the number of lesions caused by Pythium and increased the number of lateral roots. The effect of the Pythium on emergence and shoot growth was significantly reduced by all the Trichoderma strains except strain To10. Inoculation with Trichoderma strains TH1 and T4 resulted in significantly greater wet root weights (62% and 57%, respectively) in the presence of Pythium compared to the Pythium control. Strain N47 significantly increased the shoot/root ratio compared to the Pythium control. Inoculation with Trichoderma strains T4, T12 and N47 significantly reduced Pythium populations. Pythium increased the activity of C, N and P cycle enzymes, whilst four Trichoderma strains reduced this effect, indicating reduced plant damage and C leakage. Overall, strains T4 and N47 had the greatest beneficial characteristics, as both these strains improved plant growth in the absence of Pythium and reduced plant damage in the presence of Pythium. The dual properties of these strains improve the commercial application, giving them an advantage over single action inocula, especially in the absence of plant pathogens.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号