首页 | 本学科首页   官方微博 | 高级检索  
     


Mitogen activated protein kinase 14-1 regulates serum glucocorticoid kinase 1 during seawater acclimation in Atlantic killifish, Fundulus heteroclitus
Authors:Notch Emily G  Chapline Chris  Flynn Erin  Lameyer Tess  Lowell Alyson  Sato Denry  Shaw Joseph R  Stanton Bruce A
Affiliation:Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA. emily.notch@dartmouth.edu
Abstract:The Atlantic killifish (Fundulus heteroclitus) is an environmental sentinel organism used extensively for studies of environmental toxicants and osmoregulation. Previous research in our laboratory has shown that acute acclimation to seawater is mediated by an increase in SGK1. SGK1 promotes the trafficking of CFTR chloride channels from intracellular vesicles to the plasma membrane of the gill within the first hour in seawater resulting in increased chloride secretion. Although we have shown that the increase in gill SGK1 does not require activation of the glucocorticoid receptor, the mechanisms that mediate the rise SGK1 during acute acclimation is unknown. To test the hypothesis that mitogen activated protein kinase (MAPK14) is responsible for the rise in SGK1 we identified the coding sequence of killifish MAPK14-1 and designed a translational blocking vivo-morpholino targeting MAPK14-1. Injection of the MAPK14-1 vivo-morpholino resulted in a 30% reduction of MAPK14-1 and a 45% reduction in phosphorylated-MAPK14-1 protein in the gill of killifish transitioned from freshwater to seawater. Knock down of phosphorlyated-MAPK14-1 completely blocked the rise in SGK1 mRNA and protein in the killifish gill, providing the first direct and in vivo evidence that MAPK14-1 is necessary for acute seawater acclimation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号