Abstract: | Both cell-matrix and cell-cell interactions are important regulators of the function of most human cells. In this study we investigated how these interactions controlled the production of vasodilators nitric oxide (NO), and prostacyclin (PGI2), in freshly isolated human umbilical vein endothelial cells (HUVECs). On the reconstituted extracellular matrix (ECM) Matrigel freshly isolated HUVECs treated with interleukin-1β, lipopolysaccharide, and interferon-γ, produced more NO, but less PGI2, than on gelatin substratum. High cell density was essential for inducibility of NO production in cells plated on gelatin substratum, but not on ECM. In cells plated on gelatin substratum at low cell density, which mimicked conventional HUVEC culturing conditions, both inducible NO production and the inducible NO synthase (iNOS) mRNA levels, detected by competitive RT-PCR, were low. However, inducible PGI2 production remained high in these cells. Highest inducible NO productions were observed in HUVECs that presumably had best maintained their original differentiated phenotype. Thus our data imply that the inducible NO and PGI2 productions of freshly isolated HUVECs were differently controlled by the extracellular matrix and cell density. Our data suggest that both cell-matrix and cell-cell interactions may have a strong influence on the proinflammatory cytokine responses of human vascular endothelial cells. J. Cell. Biochem. 64:538–546. © 1997 Wiley-Liss, Inc. |