首页 | 本学科首页   官方微博 | 高级检索  
     


Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP
Authors:Thomas Volk,Karsten Mä  ding,Mario Hensel,Wolfgang J. Kox
Abstract:Ca2+ changes induced by nitric oxide (NO·) were investigated in cultured human endothelial cells. Sodium nitroprusside (SNP) (1–100 μmol/L) and S-Nitroso-N-acetylpenicillamine (SNAP) (100 μmol/L) were used as NO· donors. The cytoplasmatic Ca2+ concentration was calculated using ratiometric FURA2 fluorescence measurements. Both NO· donors caused transient oscillatory Ca2+ changes, which were not detectable in the presence of oxyhemoglobin (50 μmol/L). Digital ratio imaging revealed initiation sites within cells where Ca2+ increases started spreading, which indicates that nonuniformly distributed targets might be involved in these reactions. Calcium was released from intracellular stores as indicated by experiments performed in Ca2+-free buffer. L-type Ca2+-channel blocker diltiazem (100 μmol/L) was not able to block these responses. NO·-induced Ca2+ release from intracellular stores caused capacitative Ca2+ entry. Both thapsigargin (1 μmol/L) and cyclopiazonic acid (10 μmol/L) inhibited the SNP response completely, whereas neither ryanodine (up to 100 μmol/L) nor dantrolene (100 μmol/L) was able to inhibit Ca2+ changes induced by SNP, indicating that primarily inositol 1,4,5-triphosphate (IP3)-dependent stores are released upon stimulation with NO·. A small inhibitory effect of ATP- and SNP-induced peak [Ca2+]i increase was measured in the presence of both caffeine (20 mmol/L) and procaine (1 mmol/L). Evidence is presented that cGMP is not involved in NO·-induced Ca2+ signals, as neither inhibitors of guanylate cyclase (methylene blue and LY (83583) nor cell permeant analogues of cGMP altered or simulated [Ca2+]i changes. An inhibitor of cGMP-dependent protein kinase was also ineffective. We therefore propose that endothelial cells have specific targets proximal or at IP3 receptors to induce Ca2+ changes in endothelial cells stimulated with NO·. J. Cell. Physiol. 172:296–305, 1997. © 1997 Wiley-Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号