首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of substrate selectivity in plasma lipid transfer protein reaction over structural variation of lipid particle
Institution:1. Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria;2. Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany;3. Department of Human Genetics and Pediatrics, McGill University-Montreal Children''s Hospital, 4060 Ste-Catherine West, PT-406.2, Montreal, QC H3Z 2Z3, Canada;4. Peroxisomal Diseases Laboratory, The Hugo W Moser Research Institute, The Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205, USA
Abstract:The modulation of substrate selectivity of human plasma LTP reaction is the subject of the present investigation. The moderate selectivity by a factor of 5 to 6 was observed in the LTP-catalyzed transfer of cholesteryl ester over triacylglycerol between plasma lipoproteins. On the other hand, the transfer of cholesteryl ester by LTP was highly selective over the negligible transfer of triacylglycerol, by a factor of 60 to 500, between the microemulsions with LDL size, regardless of the activators such as human and pig apolipoprotein (apo) A-I, human apo C-III and apo E that bound to the surface of the emulsion in equilibrium. The presence of free cholesterol in these microemulsions reduced slightly the rate of cholesteryl ester transfer but had no effect on triacylglycerol transfer. Other surface-active reagents such as cholic acid, Triton X-100 and Tween-20, did not have an effect on the triacylglycerol transfer either. Triacylglycerol transfer by LTP became measurable between such lipid particles as prepared by co-sonication of lipid with pig apo A-I and isolated as the mixed-microemulsions in the density of LDL and HDL. In these conditions, the substrate selectivity for cholesteryl ester over triacylglycerol was a factor of 6 to 16 mimicking the ratio in plasma lipoproteins. The conformation of pig apo A-I estimated by circular dichroism showed that its apparent helical content was further more induced when apo A-I was integrated into the mixed-microemulsion by co-sonication than the lipid-bound apo A-I in equilibrium. Apo A-I, thus integrated into lipid particles, was highly resistant to the denaturation by guanidine hydrochloride while the lipid-bound apo A-I in equilibrium was denatured as readily as the lipid-free protein. Thus, triacylglycerol transfer by LTP was induced by structural modulation of substrate-carrying lipid particles such as higher integration of apolipoproteins.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号