首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues
Authors:Illing Nicola  Denby Katherine J  Collett Helen  Shen Arthur  Farrant Jill M
Institution:1 Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
Abstract:Desiccation-tolerance in vegetative tissues of angiosperms hasa polyphyletic origin and could be due to 1) appropriation ofthe seed-specific program of gene expression that protects orthodoxseeds against desiccation, and/or 2) a sustainable version ofthe abiotic stress response. We tested these hypotheses by comparingmolecular and physiological data from the development of orthodoxseeds, the response of desiccation-sensitive plants to abioticstress, and the response of desiccation-tolerant plants to extremewater loss. Analysis of publicly-available gene expression dataof 35 LEA proteins and 68 anti-oxidant enzymes in the desiccation-sensitiveArabidopsis thaliana identified 13 LEAs and 4 anti-oxidantsexclusively expressed in seeds. Two (a LEA6 and 1-cys-peroxiredoxin)are not expressed in vegetative tissues in A. thaliana, buthave orthologues that are specifically activated in desiccatingleaves of Xerophyta humilis. A comparison of antioxidant enzymeactivity in two desiccation-sensitive species of Eragrostiswith the desiccation-tolerant E. nindensis showed equivalentresponses upon initial dehydration, but activity was retainedat low water content in E. nindensis only. We propose that theseantioxidants are housekeeping enzymes and that they are protectedfrom damage in the desiccation-tolerant species. Sucrose isconsidered an important protectant against desiccation in orthodoxseeds, and we show that sucrose accumulates in drying leavesof E. nindensis, but not in the desiccation-sensitive Eragrostisspecies. The activation of "seed-specific" desiccation protectionmechanisms (sucrose accumulation and expression of LEA6 and1-cys-peroxiredoxin genes) in the vegetative tissues of desiccation-tolerantplants points towards acquisition of desiccation tolerance fromseeds.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号