首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Patterned cell adhesion by self-assembled structures for use with a CMOS cell-based biosensor
Authors:Franks W  Tosatti S  Heer F  Seif P  Textor M  Hierlemann A
Institution:ETH Zürich, Physical Electronics Laboratory, ETH H?nggerberg, Wolfgang-Pauli-Strasse 16, HPT H 4.2, 8122 Binz bei Maur, Switzerland. wendy_franks@mckinsey.com
Abstract:A strategy for patterned cell adhesion based on chemical surface modification is presented. To confine cell adhesion to specific locations, an engineered surface for high-contrast protein adsorption and, hence, cell attachment has been developed. Surface functionalization is based on selective molecular-assembly patterning (SMAP). An amine-terminated self-assembled monolayer is used to define areas of cell adhesion. A protein-repellent grafted copolymer, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), is used to render the surrounding silicon dioxide resistant to protein adsorption. X-ray photoelectron spectroscopy, scanning ellipsometry and fluorescence microscopy techniques were used to monitor the individual steps of the patterning process. Successful guided growth using these layers is demonstrated with primary neonatal rat cardiomyocytes, up to 4 days in vitro, and with the HL-1 cardiomyocyte cell line, up to 7 days in vitro. The advantage of the presented method is that high-resolution engineered surfaces can be realized using a simple, cost-effective, dip-and-rinse process. The technique has been developed for application on a CMOS cell-based biosensor, which comprises an array of microelectrodes to extracellularly record electrical activity from cardiomyocytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号