首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+-dependent structural changes in bovine blood coagulation factor Va and its subunits
Authors:T M Laue  R Lu  U C Krieg  C T Esmon  A E Johnson
Affiliation:Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019.
Abstract:The calcium dependence of the structures of bovine blood coagulation factor Va and its subunits (Vh and Vl) has been examined spectroscopically in order to characterize the conformational changes which accompany the binding of Ca2+ to Vh and Vl to form factor Va. The far-UV CD spectra of the isolated subunits indicate that the secondary structures of both Vh and Vl are predominantly beta-sheet (greater than 45%), with little alpha-helix content (less than 15%). No change in the far-UV CD spectrum was observed when factor Va was formed by the addition of Ca2+ to an equimolar mixture of Vl and Vh. Hence, no detectable change in secondary structure occurs during the formation of factor Va. In contrast, the addition of Ca2+ to an equimolar mixture of Vh and Vl caused a small (2%) increase in the total intrinsic fluorescence intensity and a blue shift in the emission spectrum that resulted from a tertiary structural change and/or the association of nonpolar surfaces at the subunit interface. This fluorescence change correlated closely with the appearance of functional factor Va, since the rate of the spectral change was the same as the rate of recovery of cofactor activity, and since both were half-maximal near 50 microM Ca2+. This fluorescence change required both subunits, was reversed by the addition of EDTA, and was observed only with metal ions that can substitute for Ca2+ in reconstituting factor Va activity from Vh and Vl (Mn2+ and Tb3+; not Mg2+). When a sample containing ANS (8-anilino-1-naphthalenesulfonate) and an equimolar mixture of calcium-free Vh and Vl was titrated with Ca2+, the ANS emission intensity decreased by about 30%, most likely because the association of Vl and Vh caused nonpolar regions at the subunit-subunit interface to become inaccessible for ANS binding. The calcium dependence of this spectral change yielded a Kd of 51 +/- 2 microM, and the rate of the decrease in ANS fluorescence occurred at nearly the same rate as the recovery of factor Va activity. Thus, both intrinsic and extrinsic fluorescence data, as well as other data, indicate that the calcium binding site in factor Va has an apparent Kd of 50 microM under our conditions and that the calcium-mediated binding between Vl and Vh involves hydrophobic interactions between the subunits.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号