首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death
Authors:J J Cohen  R C Duke
Abstract:Dexamethasone and corticosterone kill mouse thymocytes, as measured by eosin uptake, after several hours of in vitro incubation. This killing requires RNA and protein synthesis, because it is inhibited by cycloheximide, emetine, or actinomycin D. An earlier event than cell death is the extensive fragmentation of nuclear DNA into oligonucleosomal subunits; this fragmentation also requires RNA and protein synthesis. The DNA cleavage results from the action of an endonuclease that preferentially cleaves DNA in the linker regions between nucleosomes. This endonuclease is found constitutively in the nuclei of thymocytes and some other cells, and requires calcium and magnesium ions for its activation; if isolated fresh thymocyte nuclei are incubated with these ions, as much as 77% of their DNA is cleaved within 90 min. Thus, the protein for which synthesis is necessary for glucocorticoid-induced thymocyte death is not the endonuclease itself, but is in some way involved in its activation; we suggest that it may be part of a system for transporting calcium into the nucleus. The endonuclease is inhibited by zinc, which also prevents thymocyte death. It appears that glucocorticoids cause thymocyte death by activating an enzyme that rapidly and extensively degrades DNA. This "death from within" is biochemically and morphologically different from toxic or accidental cell death, such as that induced by azide, heat, or antibody and complement treatment. Although mature T cells also contain the endogenous endonuclease, they lack the glucocorticoid-inducible mechanism for activating it, and are thus glucocorticoid-resistant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号