首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Life cycle assessment of a large,thin ceramic tile with advantageous technological properties
Authors:Martina Pini  Anna Maria Ferrari  Rita Gamberini  Paolo Neri  Bianca Rimini
Institution:1. Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Via Amendola, 2, 42100, Reggio Emilia, Italy
Abstract:

Purpose

Ceramic tiles play a strategic role in the Italian market; currently, the Italian production is of 367.2 million m2 (Confindustria Ceramica 2012). In 2009, Italy was positioned as the world’s fourth largest producer of ceramic tiles, producing 368 million m2 of the world’s total production of 1,735 million m2 Giacomini (Ceram World Rev 88:52–68, 2010). Therefore, there is an ongoing effort to create innovations in the products offered and their manufacturing processes, in order to better compete on the market and to create eco-friendly products. Recently, the Italian Ceramic District has increased its focus on environmental issues with the aim of protecting natural resources and reducing the energy and material consumption. For this reason, a new product was born in the Italian Ceramic District, namely, a large thin ceramic tile (dimensions 1,000 mm?×?3,000 mm?×?3.5 mm) reinforced with a fibreglass backing, which gives the product excellent resistance and flexibility properties. The aim was to manufacture a new product with lower environmental impact than the traditional one. The production of a large thin ceramic tile requires, in fact, a lower quantity of materials, transports and energy consumptions comparing to the same metres square of traditional ceramic tile. At the present, no comparative life cycle assessment (LCA) studies have been performed between traditional and innovative ceramic stoneware tiles. This study analyses, for the first time, a life cycle of the innovative ceramic product (porcelain stoneware) developed by a company of the Italian Ceramic District.

Methods

The analysis is performed using the LCA methodology, in order to identify environmental impacts, energy consumption and CO2 equivalent emissions that occur during extraction of raw materials, transportation, production, material handling, distribution and end-of-life stages within a cradle to grave perspective.

Results and conclusions

LCA analysis indicates that the highest environmental impact mainly affects the respiratory inorganics impact category due to base slip production (27.62 %), caused by the transport of the raw materials and by non-renewable impact category due to both the pasting phase (21.31 %) and the two-component adhesive manufacture. The major greenhouse gas (GHG) emissions are related to the production of polyurethane, a component of the adhesive used in the pasting stage, and to the natural gas consumption in the firing process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号