首页 | 本学科首页   官方微博 | 高级检索  
     


Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis
Authors:Kathleen L. Horwath  John G. Duman
Affiliation:Department of Biology, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
Abstract:The importance of photoperiod, temperature and their interaction in controlling the seasonal pattern of haemolymph antifreeze protein levels in larvae of the beetle Dendroides canadensis was investigated. A complete photoperiodic response curve for antifreeze protein production was generated at 20°C with larvae collected in early fall. Individuals exposed to a 10-h photoperiod or less, including constant darkness, had significantly elevated antifreeze levels over those maintained in an 11-h photoperiod or more, including constant light. The critical daylength resulting in 50% population response lies between LD 11:13 and LD 10:14. This photoperiodic response was masked at sufficiently low (threshold between 15 and 10°C) and high (threshold between 25 and 30°C) temperatures. Partial photoperiodic response curves (at 17 and 25°C) obtained within this specified temperature range indicate that the position of the critical photoperiod (between 10 and 11 h) is stable while the amplitude of the response curve is temperature dependent.Experiments investigating the mechanisms controlling the spring depletion of protein antifreeze levels suggest that both photoperiod and temperature are important.The dominant response of photoperiod in the fall along with the modifying effects of temperature are considered to provide the necessary precision to assure adequate cold tolerance early in the fall and the flexibility to protect the species from yearly variation in weather conditions.
Keywords:photoperiod  temperature  antifreezes  thermal hysteresis proteins  cold hardiness  environmental regulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号