首页 | 本学科首页   官方微博 | 高级检索  
     


Hyperactivity and interactions of a chimeric myristoryl-ACP thioesterase from the lux system of luminescent bacteria
Authors:Li J  Szittner R  Meighen E A
Affiliation:Department of Biochemistry, Room 813, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Que., H3G 1Y6, Montreal, Canada.
Abstract:A chimeric myristoyl-ACP thioesterase with much higher catalytic efficiency than the parental enzymes has been generated by ligating the N-terminal half of the lux-specific thioesterase (LuxD) from Photobacterium phosphoreum with the C-terminal half of LuxD from Vibrio harveyi. The LuxD chimera had the same rate-limiting step and specificity, but cleaved esters and thioesters over eight times faster than the native enzymes. LuxD, along with acyl-protein synthetase (LuxE) and reductase (LuxC), comprise a multienzyme complex channeling activated fatty acids into the aldehyde substrate for the bacterial bioluminescence reaction. As P. phosphoreum LuxD and LuxE modulate each of their respective activities, the effects of mixing V. harveyi and the chimeric LuxD with P. phosphoreum LuxE were investigated. The chimeric LuxD stimulated acylation of LuxE to the same extent as V. harveyi LuxD, but to a lower level than that caused by P. phosphoreum LuxD. Conversely, P. phosphoreum LuxE stimulated the thioesterase activity of V. harveyi LuxD by 30% and the chimeric LuxD by 20% while the activity of P. phosphoreum LuxD was increased by over 140%. These results show that the stimulatory effects are unrelated to the level of thioesterase activity and indicate that the carboxyl terminal region of LuxD interacts with LuxE and causes a conformational change.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号