首页 | 本学科首页   官方微博 | 高级检索  
     


A role for copper in biological time-keeping
Authors:Jiang Ziying  Morré Dorothy M  Morré D James
Affiliation:

aDepartment of Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S. University Street, West Lafayette, IN 47907-2064, USA

bDepartment of Foods and Nutrition, Purdue University, 700 W. State Street, West Lafayette, IN 47907, USA

Abstract:A family of cell surface and growth related proteins that oxidize both NADH and hydroquinones and carry out protein disulfide-thiol interchange (ECTO-NOX proteins) exhibits unique characteristics. The two activities they catalyze, hydroquinone or NADH oxidation and protein disulfide-thiol interchange, alternate in CNOX (the constitutive ECTO-NOX), to generate a regular period length of 24 min. For NADH or hydroquinone oxidation each period is defined by maxima that recur at intervals of 24 min. Here, we report that bound CuII is required to sustain the 24 min oscillation cycle of CNOX. CNOX preparations from plasma membranes of soybean, when unfolded in the presence of the copper chelator bathocuproine and refolded, lose activity. When refolded in the presence of copper, activity is restored. Unexpectedly, however, the released copper is capable of catalyzing NADH (or hydroquinone) oxidation in the absence of protein. Solvated CuII as the chloride or other salts alone is capable of catalyzing NADH oxidation and the oxidation rates oscillate with an overall period length of 24 min. With CuIICl2 the pattern consists of five maxima, two of which are separated by an interval of 6 min and three of which are separated by intervals of 4.5 min [6 min + 4 (4.5 min)]. The period length is independent of temperature and pH. The asymmetry of the oscillatory pattern is retained after solvation of the CuII salts in D2O but the overall period length is increased to 30 min. The findings suggest that the bound copper of CNOX and perhaps of ECTO-NOX proteins in general, is essential to maintain the structural changes that underlie the periodic alternations in activity that define the 24 min time-keeping cycle of the protein.
Keywords:CopperII   Hydroquinone (NADH) oxidase   CNOX   Biological clock   Time-keeping   Growth
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号