首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of diverse microbial metabolites as potent inhibitors of HIV-1 Tat transactivation
Authors:Jayasuriya Hiranthi  Zink Deborah L  Polishook Jon D  Bills Gerald F  Dombrowski Anne W  Genilloud Olga  Pelaez Fernando F  Herranz Lucia  Quamina Donette  Lingham Russell B  Danzeizen Renee  Graham Pia L  Tomassini Joanne E  Singh Sheo B
Affiliation:Merck Research Laboratories, P. O. Box 2000, Rahway, NJ 07065, USA.
Abstract:HIV-1 Tat is one of six regulatory proteins that are required for viral replication and is an attractive target for the development of new anti-HIV agents. Screening of microbial extracts using a whole cell Tat-dependent transactivation assay, which guided the separation of the active broths, led to the identification of five structurally diverse classes (M(R) range 232-1126) of natural products. These include i) three sesquiterpenoids, namely, sporogen-AO1, petasol, and 6-dehydropetasol, ii) two resorcylic 14-membered lactones, namely monorden and monocillin IV, iii) a ten-membered lactone, iv) a quinoline and quinoxiline bicyclic octadepsipeptides, namely echinomycin and UK-63598, and v) a cyclic heptapeptide, ternatin. These compounds displayed varying degrees of potencies with IC50 values ranging from 0.0002 to 100 microM. The most active compound was the quinoxiline bicyclic octadepsipeptides, UK-63598, which inhibited Tat-dependent transactivation with an IC50 value of 0.2 nM and exhibited a 100-fold therapeutic window with respect to toxicity. In a single-cycle antiviral assay, UK-6358 inhibited viral replication with an IC50 value of 0.5 nM; however, it appeared to be equally toxic at that concentration. Monocillin IV was significantly less active (Tat transactivation inhibitory IC50 of 5 microM) but was not toxic at 100 microM in an equivalent cytotoxicity assay. The compound exhibited antiviral activity with an IC50 value of 6.2 microM in the single-cycle antiviral assay and a sixfold therapeutic window. Details of the isolation, fermentation, and biological activities of these structurally diverse natural products are described.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号