首页 | 本学科首页   官方微博 | 高级检索  
     


Pleurotus species convert monoterpenes to furanoterpenoids through 1,4-endoperoxides
Authors:Sven Krü  gener,Carmen SchaperUlrich Krings,Ralf G. Berger
Affiliation:Zentrum für Angewandte Chemie der Leibniz Universität Hannover, Institut für Lebensmittelchemie, Callinstr. 5, D-30167 Hannover, Germany
Abstract:Enzymatic synthesis of furanoterpenoids from β-myrcene and related monoterpenes was observed using a solubilised enzyme fraction of mycelium lyophilisates of several Pleurotus species. The initial enzymatic step, the incorporation of molecular oxygen into the conjugated 1,3-diene moiety, was similar to a 2 + 4 cycloaddition of 1,3-dienes with dienophilic 1O2, and was followed by a non-catalysed degradation sequence leading to the furans. The cyclic peroxides 3,6-dihydro-4-(2-(3,3-dimethyloxiran-2-yl)ethyl)-1,2-dioxine and 5-(3,6-dihydro-1,2-dioxin-4-yl)-2-methylpentan-2-ol were identified as key intermediates. Biotransformation of β-myrcene in 18O-labelled HEPES-buffer did not yield a detectable label in perillene, so a water addition to 3,10-epoxy-β-myrcenes as an alternative was ruled out. The pathway suggested presents a substantiated biogenetic scheme for the formation of monoterpenoid furans and opens biotechnological access to valuable natural flavour compounds, such as perillene and rosefurane. Only one metabolite, identified as the new natural compound 6-methyl-2-methylene-hept-5-enal, carried the 18O-label. The enzymatic formation of this compound through a 1,2-endoperoxide (3-(5-methyl-1-methylene-hex-4-enyl)-[1,2]-dioxetane) is suggested. The label may simply result from a chemical oxygen exchange between the carbonyl group and the 18O-labelled water.
Keywords:Pleurotus sapidus   β-Myrcene   Endoperoxide   Rose furane   Perillene
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号