首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea
Authors:Evans M G  Lagostena L  Darbon P  Mammano F
Institution:MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, STAFFS, ST5 5BG, UK. M.G.Evans@cns.keele.ac.uk
Abstract:We have studied the action of cholinergic agonists on outer hair cells, both in situ and isolated from the cochlea of the guinea pig, combining new fast CCD technology for Ca2+ imaging and conventional patch-clamp methods. Carbachol (1 mM) activated a current with a reversal potential near -70 mV and a bell-shaped I-V curve, suggesting that it was a Ca2+ activated K+ current. In a few cells, this current was preceded by a transient inward current, probably owing to an influx of Ca2+ and other cations through the acetylcholine (ACh) receptors. The amplitude of the Ca2+ signal was maximal in a circumscribed region at the basal pole of the cell and decreased steeply towards the apical pole, compatible with Ca2+ influx and/or Ca2+ induced Ca2+ release at the cells base. The time course of the Ca2+ rise was fastest at the base, but it was still slightly slower, and more rounded, than that of the K+ current. In some recordings the K+ current was observed without any measurable change of intracellular Ca2+. The K+ current was potentiated (18%) by caffeine (5 mM), and decreased (19%) by ryanodine (0.1 mM) in the majority of cells tested. The results are discussed in terms of a labile intracellular Ca2+ store located at the base of the cell, close to the Ca2+ permeable ACh receptor channels and Ca2+ activated K+ channels, whose contribution to the Ca2+ rise occurring in the region of the channels is variable, and probably dependent on its ability to refill with Ca2+.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号