首页 | 本学科首页   官方微博 | 高级检索  
     


Heterogeneity in the actions of drugs that bind in the DNA minor groove.
Authors:F G Albert  T T Eckdahl  D J Fitzgerald  J N Anderson
Affiliation:Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
Abstract:Distamycin and Hoechst 33258 have long served as the model compounds for biochemical, biophysical, and clinical studies of the drugs that bind in the DNA minor groove. However, the results presented in this investigation clearly show that 4,6-diamidino-2 phenylindole (DAPI) is superior to both of these drugs at negating the effects of intrinsic DNA curvature and anisotropic bendability as measured by electrophoretic and ligation analysis. In addition, DAPI was more effective than distamycin and Hoechst 33258 at inhibiting the assembly of nucleosomes onto synthetic and natural sequences that have multiple closely spaced oligo-AT sequences that serve as drug binding sites. Since these effects may be related to the biological action of the drugs, it was of interest to determine the mechanism that was responsible for the enhanced action of DAPI. The possibility that the differential drug potencies resulted from differential overall affinities of the ligands for A-tract molecules was considered, but drug binding studies suggested that this was not the case. It is also unlikely that the differential drug effects resulted from the binding of the drugs to different DNA sites since the oligo A/T binding sites for DAPI and Hoechst were centered on the same nucleotide positions as revealed by footprinting studies using exonuclease III, DNase I, and hydroxyl radical. However, the footprinting studies with DNase I did uncover a potentially important difference between the drugs. DAPI protected only the AT bp in the binding sites, while distamycin and Hoechst protected these bp as well as flanking Gs and Cs. These results permitted us to advance a preliminary model for the enhanced action DAPI. According to the model, the short length of DAPI and its absolute specificity for A/T bps with narrow minor grooves ensures that only particularly minor grooves that give rise to curvature and anisotropic bendability are occupied by the drug. Consequently, each helical deflection induced by an A-tract in the absence of the drug is countered by an opposite deflection induced by DAPI binding, thus effectively neutralizing intrinsic curvature and bending into the minor groove.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号