首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cooperative binding of single-stranded telomeric DNA by the Pot1 protein of Schizosaccharomyces pombe
Authors:Lei Ming  Baumann Peter  Cech Thomas R
Institution:Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.
Abstract:The fission yeast Pot1 (protection of telomeres) protein is a single-stranded telomeric DNA-binding protein and is required to protect the ends of chromosomes. Its N-terminal DNA-binding domain, Pot1pN, shows sequence similarity to the first OB fold of the telomere-binding protein alpha subunit of Oxytricha nova. The minimal-length telomeric ssDNA required to bind Pot1pN was determined to consist of six nucleotides, GGTTAC, by gel filtration chromatography and filter-binding assay (K(D) = 83 nM). Pot1pN is a monomer, and each monomer binds one hexanucleotide. Experiments with nucleotide substitutions demonstrated that the central four nucleotides are crucial for binding. The dependence of Pot1pN-ssDNA binding on salt concentration was consistent with a single ionic contact between the protein and the ssDNA phosphate backbone, such that at physiological salt condition 83% of the free energy of binding is nonelectrostatic. Subsequent binding experiments with longer ssDNAs indicated that Pot1pN binds to telomeric ssDNA with 3' end preference and in a highly cooperative manner that mainly results from DNA-induced protein-protein interactions. Together, the binding properties of Pot1pN suggest that the protein anchors itself at the very 3' end of a chromosome and then fills in very efficiently, coating the entire single-stranded overhang of the telomere.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号