首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of 2,4‐dinitrotoluene on the anaerobic bacterial community in marine sediment
Authors:H. Yang  J.‐S. Zhao  J. Hawari
Affiliation:1. Biotechnology Research Institute, National Research Council Canada, Montréal, Québec, Canada H4P 2R2;2. College of Life Sciences, Central China Normal University, Wuhan, China
Abstract:Aims: To study the impact of added 2,4‐dinitrotoluene (DNT) on the anaerobic bacterial community in marine sediment collected from an unexploded ordnance dumping site in Halifax Harbour. Methods and Results: Marine sediment was spiked with 2,4‐DNT and incubated under anaerobic conditions in the presence and absence of lactate. Indigenous bacteria in the sediment removed 2,4‐DNT with subsequent formation of its mono‐ and diamino‐derivatives under both conditions. PCR–DGGE and nucleotide sequencing were used to monitor the change in the bacterial population in sediment caused by the presence of 2,4‐DNT. The results showed that denaturing gradient gel electrophoresis banding patterns of sediment microcosms treated with 2,4‐DNT were different from controls that did not receive 2,4‐DNT. Bacteroidetes, Firmicutes and δ‐Proteobacteria were present in sediment incubated in the absence of 2,4‐DNT. However, several γ‐Proteobacteria became dominant in sediment in the presence of 2,4‐DNT, two of which were 99% similar to Shewanella canadensis and Shewanella sediminis. In the presence of both 2,4‐DNT and lactate, two additional δ‐Proteobacteria were enriched, one closely related (98% similarity) to Desulfofrigus fragile and the other affiliated (96% similarity) to Desulfovibrio sp. In contrast, none of the above four Proteobacteria were enriched in sediment incubated with lactate alone. Conclusions: Presence of 2,4‐DNT led to a significant change in bacterial population of marine sediment with the enrichment of several γ‐ and δ‐Proteobacteria. Significance and Impact of the Study: Our results provided the first evidence on the impact of the pollutant 2,4‐DNT on the indigenous bacterial community in marine sediment, and provided an insight into the composition of bacterial community that degrade 2,4‐DNT.
Keywords:2,4‐dinitrotoluene  anaerobic  bacterial community  denaturing gradient gel electrophoresis  impact  marine sediment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号