首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antifungal susceptibility of Saccharomyces cerevisiae and therapy in a murine model of disseminated infection
Authors:Alba Pérez-Cantero  Pamela Thomson  Katihuska Paredes  Josep Guarro  Javier Capilla
Institution:Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, IISPV Reus, Tarragona, Spain
Abstract:

Background

The incidence of systemic infections by Saccharomyces cerevisiae has increased in recent years, especially among immunocompromised patients. Amphotericin B, voriconazole or echinocandins have been used with favorable outcome against systemic infections by this fungus. However, clinical experience is limited and no in vivo studies have been conducted.

Aims

We evaluated the in vitro activity of nine antifungal compounds against S. cerevisiae and the in vivo efficacy of those three antifungals showing the highest in vitro activity by using a murine model of systemic infection.

Methods

Minimal inhibitory concentrations (MICs) were determined by the microdilution method against three strains of S. cerevisiae. After intravenous infection with 5 × 107 CFUs, animals received liposomal amphotericin B (5 mg/kg), voriconazole (25 mg/kg) or anidulafungin (5 mg/kg). Treatment efficacy was assessed by determining of CFUs/g in liver, kidney, brain, lung and spleen.

Results

5-Fluorocytosine was the most in vitro active compound followed by amphotericin B, voriconazole and anidulafungin. The in vivo study showed that liposomal amphotericin B was the most effective drug driving highest fungal clearance.

Conclusions

All treatments reduced the fungal load in comparison to the control group, being liposomal amphotericin B the most effective drug followed by anidulafungin and finally voriconazole.
Keywords:Animal model  Susceptibility  Antifungal therapy  Systemic infection  Modelo animal  Sensibilidad  Tratamiento antifúngico  Infección sistémica
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号