首页 | 本学科首页   官方微博 | 高级检索  
     


Management of invasive plants through ecological resistance
Authors:Chaeho?Byun  author-information"  >  author-information__contact u-icon-before"  >  mailto:chaeho.byun@mail.mcgill.ca"   title="  chaeho.byun@mail.mcgill.ca"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,Sylvie?de?Blois,Jacques?Brisson
Affiliation:1.School of Civil and Environmental Engineering,Yonsei University,Seoul,Korea;2.Department of Plant Science, McGill School of Environment,McGill University,Montreal,Canada;3.Département de Sciences Biologiques and Institut de recherche en biologie végétale,Université de Montréal,Montreal,Canada
Abstract:Despite debates on the real impact of plant invasion on native biodiversity, there remain many situations where exotic invasive plants must be managed and habitats restored. Restoration practices that build on plant community assembly principles could be useful to delay or prevent re-invasion after control, but there are still few syntheses of the biodiversity theory, ecological mechanisms and experimental evidence relevant to invasive plant management, possibly delaying applications. To provide such a synthesis, we review current knowledge on three key determinants of invasion success: biotic resistance, abiotic constraints, and propagule pressure. We elaborate on the ecological mechanisms at play for each determinant and emphasize, using case studies, their relevance for invasive plant management and ecological restoration. We find evidence that restoring a plant cover can enhance invasion resistance, but the challenge for both research and field applications is to understand how multiple determinants interact in relation to species traits in the fields. Failure to recognize these interactions and their effect on community assembly processes may explain some of the mixed species responses observed. While we need control and restoration case studies with local species at different sites, the development of a coherent, dynamic and adaptive framework around biotic/ecological resistance will have to go beyond the idiosyncrasy of the many species and systems being tested. Emphasizing the functional diversity of the restored community seems a promising approach when facing potentially multiple invaders and/or fluctuating abiotic conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号