首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accentuate the negative: proteome comparisons using the negative proteome database
Authors:Reiter Lawrence T  Do Long H  Fischer Michael S  Hong Nancy A  Bier Ethan
Institution:Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA.
Abstract:The availability of complete genome sequence information for diverse organisms including model genetic organisms has ushered in a new era of protein sequence comparisons making it possible to search for commonalities among entire proteomes using the Basic Local Alignment Search Tool (BLAST). Although the identification and analysis of proteins shared by humans and model organisms has proven an invaluable tool to understanding gene function, the sets of proteins unique to a given model organism's proteome have remained largely unexplored. We have constructed a searchable database that allows biologists to identify proteins unique to a given proteome. The Negative Proteome Database (NPD) is populated with pair-wise protein sequence comparisons between each of the following proteomes: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Dictyostelium discoideum, Chlamydomonus reinhardti, Escherichia coli K12, Arabidopsis thaliana and Methanoscarcina acetivorans. Our analysis of negative proteome datasets using the NPD has thus far revealed 107 proteins in humans that may be involved in motile cilia function, 1628 potential pesticide target proteins in flies, 659 proteins shared by flies and humans that are not represented in the less neurologically complex worm proteome, and 180 nuclear encoded human disease associated proteins that are absent from the fly proteome. The NPD is the only online resource where users can quickly perform complex negative and positive comparisons of model organism proteomes. We anticipate that the NPD and the adaptable algorithm which can readily be used to duplicate this analysis on custom sets of proteomes will be an invaluable tool in the investigation of organism specific protein sets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号