首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains
Authors:H D Mortensen  K Gori  H Siegumfeldt  P Nissen  L Jespersen  N Arneborg
Institution:(1) Department of Food Science, Food Microbiology, The Royal Veterinary & Agricultural University, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
Abstract:The effects of NaCl stress on cell area and intracellular pH (pHi) of individual cells of two Debaryomyces hansenii strains were investigated. Our results show that one of the strains was more NaCl tolerant than the other, as determined by the rate of growth initiation. Whereas NaCl stress caused similar cell shrinkages (30–35%), it caused different pHi changes of the two D. hansenii strains; i.e., in the more NaCl-tolerant strain, pHi homeostasis was maintained, whereas in the less NaCl-tolerant strain, intracellular acidification occurred. Thus, cell shrinkage could not explain the different intracellular acidifications in the two strains. Instead, we introduce the concept of yeasts having an intracellular pKa (pKa,i) value, since permeabilized D. hansenii cells had a very high buffer capacity at a certain pH. Our results demonstrate that the more NaCl-tolerant strain was better able to maintain its pKa,i close to its pHi homeostasis level during NaCl stress. In turn, these findings indicate that the closer a D. hansenii strain can keep its pKa,i to its pHi homeostasis level, the better it may manage NaCl stress. Furthermore, our results suggest that the NaCl-induced effects on pHi were mainly due to hyperosmotic stress and not ionic stress.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号