首页 | 本学科首页   官方微博 | 高级检索  
     


Active site-independent recognition of substrates and product by bovine prothrombinase: a fluorescence resonance energy transfer study
Authors:Boskovic Danilo S  Troxler Thomas  Krishnaswamy Sriram
Affiliation:Joseph Stokes Research Institute, Children's Hospital of Philadelphia, 310A Abramson, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
Abstract:The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号