首页 | 本学科首页   官方微博 | 高级检索  
     


Development,validation and enzyme kinetic evaluation of multi walled carbon nano tubes mediated tyrosinase based electrochemical biosensing platform for the voltammetric monitoring of epinephrine
Affiliation:1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang 330013, China;2. College of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013, China
Abstract:Epinephrine (EP) is one of the key neurotransmitter, which plays a vital role in the central nervous system. Current research report designates the development of biosensor based on the modification of glassy carbon electrode (GCE) with multi walled carbon nano tubes (MWCNTs) followed by drop casting of Tyrosinase (Ty) enzyme (Ty/MWCNTs/GCE) towards the sensitive monitoring of EP. The electrochemical behavior of EP at Ty/MWCNTs/GCE biosensor was examined and the redox mechanism was proposed. The developed Ty/MWCNTs/GCE was characterized by electrochemical techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and tafel plot studies. The influence of pH of phosphate buffer solution (PBS) on the electrochemical redox behavior of EP was observed and pH-7.0 was identified as optimal pH value. The electrochemical kinetic parameters such as heterogeneous rate constant, diffusion coefficient and charge transfer coefficient values were evaluated. The limit of detection and limit of quantification values were evaluated. The low apparent Michaelis – Menten constant (Kmapp) was determined as 0.159 mM, demonstrating the immense catalytic activity of Ty enzyme. Repeatable, reproducible and stable nature of the fabricated Ty/MWCNTs/GCE was successfully examined. Finally, the developed biosensor was tested for the practical application in quantification of EP in human serum samples.
Keywords:Epinephrine  Multi walled carbon nano tubes  Tyrosinase  Electrochemical impedance spectroscopy  Michaelis – Menten kinetics  Formulation studies
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号