首页 | 本学科首页   官方微博 | 高级检索  
     


Increasing the chemical space of proteins in living cells via genetic code expansion
Affiliation:Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany
Abstract:In recent years it has become possible to genetically encode an expanded set of designer amino acids with tailored chemical and physical properties (dubbed unnatural amino acids, UAAs) into proteins in living cells by expanding the genetic code. Together with developments in chemistries that are amenable to and selective within physiological settings, these strategies have started to have a big impact on biological studies, as they enable exciting in cellulo applications. Here we highlight recent advances to covalently stabilize transient protein–protein interactions and capture enzyme substrate-complexes in living cells using proximity-triggered and residue-selective photo-induced crosslinking approaches. Furthermore, we describe recent efforts in controlling enzyme activity with photocaged UAAs and in extending their application to a variety of enzymatic scaffolds. In addition, we discuss the site-specific incorporation of UAAs mimicking post-translational modifications (PTMs) and approaches to generate natively-linked ubiquitin–protein conjugates to probe the role of PTMs in modulating complex cellular networks.
Keywords:Genetic code expansion  Unnatural amino acids  Proximity-triggered crosslinking  Photocrosslinking  Photocaging  Post-translational modifications
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号