首页 | 本学科首页   官方微博 | 高级检索  
     


A c-Myc and Surface CD19 Signaling Amplification Loop Promotes B Cell Lymphoma Development and Progression in Mice
Authors:Jonathan C Poe  Veronique Minard-Colin  Evgueni I Kountikov  Karen M Haas  Thomas F Tedder
Affiliation:Department of Immunology, Duke University Medical Center, Durham, NC 27710.
Abstract:Malignant B cells responding to external stimuli are likely to gain a growth advantage in vivo. These cells may therefore maintain surface CD19 expression to amplify transmembrane signals and promote their expansion and survival. To determine whether CD19 expression influences this process, Eμ-Myc transgenic (c-Myc(Tg)) mice that develop aggressive and lethal B cell lymphomas were made CD19 deficient (c-Myc(Tg)CD19(-/-)). Compared with c-Myc(Tg) and c-Myc(Tg)CD19(+/-) littermates, the median life span of c-Myc(Tg)CD19(-/-) mice was prolonged by 81-83% (p < 0.0001). c-Myc(Tg)CD19(-/-) mice also lived 42% longer than c-Myc(Tg) littermates following lymphoma detection (p < 0.01). Tumor cells in c-Myc(Tg) and c-Myc(Tg)CD19(-/-) mice were B lineage derived, had a similar phenotype with a large blastlike appearance, invaded multiple lymphoid tissues, and were lethal when adoptively transferred into normal recipient mice. Importantly, reduced lymphomagenesis in c-Myc(Tg)CD19(-/-) mice was not due to reductions in early B cell numbers prior to disease onset. In mechanistic studies, constitutive c-Myc expression enhanced CD19 expression and phosphorylation on active sites. Reciprocally, CD19 expression in c-Myc(Tg) B cells enhanced c-Myc phosphorylation at regulatory sites, sustained higher c-Myc protein levels, and maintained a balance of cyclin D2 expression over that of cyclin D3. These findings define a new and novel c-Myc:CD19 regulatory loop that positively influences B cell transformation and lymphoma progression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号