首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae
Authors:Simon Carlsen  Parayil Kumaran Ajikumar  Luca Riccardo Formenti  Kang Zhou  Too Heng Phon  Michael Lynge Nielsen  Anna Eliasson Lantz  Morten C Kielland-Brandt  Gregory Stephanopoulos
Institution:1. Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
2. Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
4. Manus Biosynthesis, 790 Memorial Drive, Cambridge, MA, 02139, USA
3. Chemical and Pharmaceutical Engineering Program, Singapore-MIT Alliance, Singapore, 117546, Singapore
5. Novozymes, A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
Abstract:Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-d-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the 4Fe–4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U–13C6 glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron–sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron–sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron–sulfur cluster proteins in its cytosol.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号