首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of repetitive DNA in rye (Secale cereale)
Authors:P K Ranjekar  J G Lafontaine  D Pallotta
Institution:1. Laboratoire de Biologie cellulaire et moléculaire, Département de Biologie Faculté des Sciences, Université Laval, Québec
Abstract:Nuclear DNA of rye (Secale cereale), a plant species with a relatively large genome (i.e., 18 pg diploid), has been characterized by determination of its content in repetitive sequences, buoyant density, and thermal denaturation properties. The reassociation kinetics of rye DNA reveals the presence of 70 to 75% repeated nucleotide sequences which are grouped into highly (Cot 1) and intermediately repetitive (Cot 1–100) fractions. On sedimentation in neutral CsCl gradients, native, high molecular weight DNA forms an almost symmetrical band of density 1.702 g/cm3. The highly repetitive DNA (Cot 1), on the other hand, is separated into two distinct peaks; the minor component has a density of 1.703 g/cm3 corresponding to that of a very rapidly reassociating fraction (Cot 0.01) which comprises 10 to 12% of the rye genome. The latter DNA contains segments which are repeated 6×105 to 6×106 times. The major peak of the Cot 1 fraction shows a density of 1.707 g/cm3 and consists of fragments repeated about 3.7×104 times. The intermediately repetitive DNA is much more heterogeneous than the Cot 1 fraction and has a low degree of repetition of the order of 8.5×102. The melting behavior of the Cot 1 fraction reveals the presence of a high degree of base pairing (i.e., 7% mismatching). When native rye DNA is resolved into fractions differing in GC content by hydroxyapatite thermal column chromatography and these fractions are analyzed for the presence of repetitive sequences, it is observed that the highly redundant DNA (Cot 1) is mostly located in the fraction denaturing between 80° and 90°C. This result suggests that highly repetitive rye DNA occurs in a portion of the genome which is neither very rich in AT nor in GC.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号