首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal dissection of beta1-integrin signaling indicates a role for p130Cas-Crk in filopodia formation
Authors:Gustavsson Anna  Yuan Ming  Fällman Maria
Institution:Department of Molecular Biology, Ume? University, 901 87 Ume?, Sweden.
Abstract:Invasin-promoted spreading of beta1-integrin-deficient cells, transfected with the beta1A- or beta1B-integrin splice variants, were used to dissect early beta1-integrin signaling events. The beta1B isoform, which has a different membrane-distal part of the cytoplasmic tail from beta1A, is defective in signaling and function. When plated on surfaces coated with the high affinity ligand invasin, beta1B-integrin-expressing cells spread by forming filopodia with distinct adhesive phosphotyrosine complexes at the tips, without signs of lamellipodia. This suggested that the beta1B-integrin mediated a partial signaling sufficient for formation of filopodia but insufficient for lamellipodia formation. When screening for proteins present in the distal filopodial phosphotyrosine complexes of beta1B cells, p130Cas and the filopodia proteins vasodilator-stimulated phosphoprotein and talin were found, whereas the typical focal complex proteins focal adhesion kinase, paxillin, and vinculin were not. Invasin-promoted adhesion induced complex formation of p130Cas and the adapter Crk. Moreover, Crk together with Dock180 were present at the filopodial tips of beta1B-integrin-expressing cells, and there was a prominent Rac1 activation. Expression of dominant negative variants of p130Cas or CrkII blocked beta1B-integrin-mediated filopodia formation, indicating that this signaling scaffold is central in this process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号