首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytochalasin inhibition of hexose transport by platelets
Authors:M K Horne  J S Hart
Institution:Clinical Pathology Department, Clinical Center, Bethesda, MD 20892.
Abstract:Previously we described a two-transporter model (T1, T2) for galactose uptake by platelets (Horne, M.K. and Hart, J.S. (1986) Biochim. Biophys. Acta 856, 448-456). In the current work we have sought corroborative evidence for this model by studying the effects of cytochalasins on this transport system. Of the various cytochalasins tested, cytochalasin B was the most potent inhibitor (I) of galactose transport, whereas cytochalasin A was less inhibitory and dihydrocytochalasin B and cytochalasin E had no inhibitory effect. The same order of potency was observed for the inhibition of L-glucose diffusion into platelets. The mechanism of cytochalasin B inhibition was investigated in detail. Inhibition of T1 was competitive and required a higher concentration of cytochalasin B (Ki1 approximately 1.7 microM) than inhibition of T2, which was of a mixed type (Ki2 approximately 0.8 microM). The effect of cytochalasin B on T2 could be accounted for by a membrane alteration which enhanced the affinity of the transporter for galactose while simultaneously preventing passage of the TSI complex into the cell. Since a similar effect on membrane permeability would also explain cytochalasin B inhibition of L-glucose diffusion, it is hypothesized that cytochalasin B binds to a membrane structure shared by T2 and the passage for L-glucose. The differences in cytochalasin B sensitivity and mechanism of inhibition manifested by T1 and T2 support our original hypothesis that galactose is indeed transported by kinetically distinct agencies and suggest that these may be physically distinct as well.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号